【Python原创设计】基于Python Flask 机器学习的全国+上海气象数据采集预测可视化系统-附下载链接以及详细论文报告,原创项目其他均为抄袭

基于Python Flask 机器学习的全国+上海气象数据采集预测可视化系统

    • 一、项目简介
    • 二、开发环境
    • 三、项目技术
    • 四、功能结构
    • 五、运行截图
    • 六、功能实现
    • 七、数据库设计
    • 八、源码获取

一、项目简介

在信息科技蓬勃发展的当代,我们推出了一款基于Python Flask的全国+上海气象数据采集、预测和可视化系统。随着气候变化越发引起全球关注,精准的气象数据和可视化展示变得愈发重要。该系统采用先进的技术和创新的功能,满足用户对实时气象信息和历史天气数据的需求,助力公众、企业和政府做出更明智的决策。

在技术层面,我们充分利用Python网络爬虫技术,从中国天气网等权威数据源获取全国实时天气数据和上海历史天气数据,确保数据的及时性和准确性。通过数据清洗和MySQL数据库存储,我们保证了数据的一致性和可靠性。同时,前端技术如HTML、CSS、JavaScript和前端框架Layui构建了简洁友好的用户交互界面,用户能轻松地获取和分析数据。而后端使用Flask搭建了强大的数据接口,通过PyMySQL库实现数据与数据库的交互。在数据预测方面,我们运用scikit-learn、pandas和numpy等机器学习库,构建了多元线性回归模型,为用户提供准确的气象分析预测结果。

系统功能丰富多样,包括全国实时天气数据和上海历史天气数据的获取,全国综合天气数据和全国各城市天气数据的Echarts可视化展示,以及气象数据的多元线性回归预测功能。此外,我们提供用户登录与注册功能,确保用户数据的安全和隐私。数据管理功能也为用户提供了个性化的数据展示和公告查看。通过多维度的数据管理,用户能够深入了解全国气象数据,做出更精准的决策。

展望未来,这样一个全国+上海气象数据采集、预测和可视化系统具有广阔的发展前景。在气候变化日益严峻的背景下,我们将不断优化和完善系统,引入更多先进的机器学习算法和数据分析方法,提高气象预测的准确性和时效性。同时,将逐步扩展到更多城市和地区,形成覆盖全国乃至全球的气象数据服务体系,助力社会各界应对气候变化带来的挑战。这将为公众、企业和政府提供更全面、更实用的天气信息,推动智慧城市和可持续发展迈出坚实的一步。

二、开发环境

开发环境版本/工具
PYTHON3.6.8
开发工具PyCharm
操作系统Windows 10
内存要求8GB 以上
浏览器Firefox (推荐)、Google Chrome (推荐)、Edge
数据库MySQL 8.0 (推荐)
数据库工具Navicat Premium 15 (推荐)
项目框架FLASK、scikit-learn

三、项目技术

Python: 作为开发语言,用于编写后端逻辑和数据处理。

Flask: Python的Web框架,用于搭建后端数据接口和处理HTTP请求。

PyMySQL: 用于Python与MySQL数据库的交互,实现数据的存储和读取。

网络爬虫技术: 用于从中国天气网等数据源获取全国实时天气数据和上海历史天气数据。

数据清洗: 用于对爬取的原始数据进行预处理,确保数据的准确性和一致性。

Echarts: JavaScript的数据可视化库,用于将数据转化为图表形式展示给用户。

LAYUI: 轻量级前端UI框架,用于构建用户友好的交互界面。

JavaScript: 用于实现前端交互和处理用户输入。

HTML和CSS: 用于构建前端界面和样式设计。

scikit-learn、pandas和numpy: Python的数据处理和机器学习库,用于数据预测和分析。

AJAX: 用于实现前后端数据交互,异步请求后端数据接口。

MySQL: 数据库管理系统,用于持久化数据。

以上技术共同协作,使得系统能够实现数据采集、预测、可视化和用户交互等丰富功能,并为用户提供准确、实用的气象信息。

四、功能结构

该系统的功能结构包括以下几个模块:

数据采集功能模块:

全国实时天气数据采集:从中国天气网等数据源获取全国各地的实时天气数据。

上海历史天气数据采集:从数据源获取上海的历史天气数据,用于数据分析和可视化展示。

数据预处理存储模块:

数据处理:对采集到的原始天气数据进行预处理,去除无效数据,确保数据的准确性和一致性。

数据库存储:将预处理后的天气数据存储到MySQL数据库中,以备后续的数据分析和预测使用。

数据可视化功能模块:

全国综合天气数据可视化:使用Echarts可视化库将全国实时天气数据以图表和地图形式展示,让用户直观了解全国范围的气象情况。

全国各城市天气数据可视化:将实时天气数据在地图上标记各城市的位置,并绘制相应的图表,让用户可以查看各城市的气象情况。

上海历史天气数据可视化:使用Echarts将历史天气数据以折线图、柱状图等形式展示,让用户可以查看上海过去一段时间的气象变化。

数据预测功能模块:

气象分析预测:利用scikit-learn、pandas和numpy等机器学习库,构建多元线性回归模型,对气象数据进行分析和预测,为用户提供准确的气象分析和预测结果。

用户登录与注册功能模块:

用户注册:允许用户通过输入用户名和密码进行注册,确保用户数据的安全性。

用户登录:已注册用户可以通过输入用户名和密码登录,以便获取个性化的气象数据展示和预测功能。

数据管理功能模块:

用户数据管理:实现对用户信息的增删改查功能,保证用户数据的完整性和安全性。

公告数据管理:如果有公告功能,可以实现对公告信息的发布、编辑和删除。

全国气象数据管理:确保从数据采集功能中获取到的全国实时天气数据能够正确存储,并且能够根据需要进行更新和清理。

这些功能模块相互协作,构成了一个完整的全国+上海气象数据采集、预测和可视化系统,为用户提供全面的气象信息,支持用户做出明智的决策。用户可以通过界面进行交互,获取实时数据、查看历史数据,并利用预测功能得到未来气象变化的趋势。该系统还具备不断拓展和优化的潜力,以适应不断变化的气象科学和用户需求。
请添加图片描述

其中论文目录结果如下:
请添加图片描述

五、运行截图

系统登录页面
请添加图片描述
用户注册页面
请添加图片描述
后台管理首页面
请添加图片描述
全国各城市气象可视化
请添加图片描述
上海各地区可视化
请添加图片描述
上海各地区城市历史气象可视化
请添加图片描述
上海各地区城市气象预测
请添加图片描述
用户管理页面**
请添加图片描述
公告管理页面
请添加图片描述
全国气象管理页面
请添加图片描述
上海气象管理页面
请添加图片描述
上海各地区历史气象管理页面
请添加图片描述
系统爬虫日志管理页面
请添加图片描述

六、功能实现

机器学习预测核心代码

# 预测数据(cityname, record_date, high, low, weather, wd, ws)
def predict(cityname, record_date, high, low, weather, wd, ws):city = citynamecityname, record_date, high, low, weather, wd, ws =deal_data.transformer_item(cityname, record_date, high, low,weather, wd, ws)next_input = [float(cityname), float(record_date), float(high), float(low), float(weather), float(wd), float(ws)]result = []for i in range(1, 11):record_date, record_str = deal_data.getNextDay(i)pred_y = model.predict([next_input])[0]next_input = [float(cityname), float(record_date)]next_input.extend(pred_y)result.append(deal_data.de_transformer_item(city, record_str, pred_y[0], pred_y[1], pred_y[2], pred_y[3], pred_y[4]))return result

创建数据库连接核心代码

def connect(self):self.conn = pymysql.connect(host=DB_CONFIG["host"],port=DB_CONFIG["port"],user=DB_CONFIG["user"],passwd=DB_CONFIG["passwd"],db=DB_CONFIG["db"],charset=DB_CONFIG["charset"],cursorclass=pymysql.cursors.DictCursor)self.cursor = self.conn.cursor()

上海城市可视化数据接口

@app.route('/data/history/weather', methods=['post', 'get'])
def data_history_category():city = request.args.get('city')result_weather = data_service.weather_category_data(city)result_wd = data_service.wd_category_data(city)result_ws = data_service.ws_category_data(city)result_temp = data_service.temp_data(city)return {"weather_data": result_weather, "wd_data": result_wd, "ws_data": result_ws, "temp_data": result_temp}

上海城市数据构建业务代码

# 气象分类
def weather_category_data(city):sqlManager = SQLManager()key_sql = "select weather from historyweather where cityname ='" + city + "' group by weather"value_sql = "select count(id) as `value`,weather as `name` from historyweather where cityname ='" + city + "' group by weather"key_data = sqlManager.get_list(key_sql)value_data = sqlManager.get_list(value_sql)x_data = [k['weather'] for k in key_data]sqlManager.close()return {'x': x_data, 'y': value_data}# 风向分类
def wd_category_data(city):sqlManager = SQLManager()key_sql = "select wd from historyweather where cityname ='" + city + "' group by wd"value_sql = "select count(id) as `value`,wd as `name` from historyweather where cityname ='" + city + "'  group by wd"key_data = sqlManager.get_list(key_sql)value_data = sqlManager.get_list(value_sql)x_data = [k['wd'] for k in key_data]sqlManager.close()return {'x': x_data, 'y': value_data}
# 风速分类
def ws_category_data(city):sqlManager = SQLManager()key_sql = "select ws from historyweather where cityname ='" + city + "'  group by ws"value_sql = "select count(id) as `value`,ws as `name` from historyweather where cityname ='" + city + "'  group by ws"key_data = sqlManager.get_list(key_sql)value_data = sqlManager.get_list(value_sql)x_data = [str(k['ws']) + '级' for k in key_data]y_data = [{'value': i['value'], 'name': str(i['name']) + '级'} for i in value_data]sqlManager.close()return {'x': x_data, 'y': y_data}

七、数据库设计

表名:citys

字段名称数据类型是否必填注释
idint(11)
city_namevarchar(50)城市名称
city_codevarchar(50)城市编码
city_pyvarchar(50)城市拼音

表名:currentweather

字段名称数据类型是否必填注释
idint(11)
provincevarchar(255)
citynamevarchar(50)城市名称
record_datedate天气时间
record_timevarchar(50)实时时分
tempint(11)当前温度
wdvarchar(20)风向
wsint(11)凤力
wseint(11)风速
sdint(11)湿度
weathervarchar(20)天气
raindecimal(10,2)降雨量
aqiint(11)空气质量
create_timedatetime数据创建时间
is_oldint(11)1老数据,0新数据

表名:detailweather

字段名称数据类型是否必填注释
idint(11)
provincevarchar(255)
citynamevarchar(50)城市名称
record_datedate天气时间
record_timevarchar(50)实时时分
tempint(11)当前温度
wdvarchar(20)风向
wsint(11)凤力
wseint(11)风速
sdint(11)湿度
weathervarchar(20)天气
raindecimal(10,2)降雨量
aqiint(11)空气质量
create_timedatetime数据创建时间
is_oldint(11)1老数据,0新数据

表名:historyweather

字段名称数据类型是否必填注释
idint(11)
provincevarchar(255)
citynamevarchar(50)城市名称
record_datedate天气时间
highint(11)最高温
lowint(11)最低温
weathervarchar(20)天气
wdvarchar(20)风向
wsint(11)风力
create_timedatetime数据创建时间

表名:notice

字段名称数据类型是否必填注释
idint(11)
titlevarchar(255)公告标题
contentlongtext公告内容
user_namevarchar(50)发布人
create_timedatetime发布时间

表名:slog

字段名称数据类型是否必填注释
idint(11)
logvarchar(255)
create_timedatetime

八、源码获取

源码、安装教程文档、项目简介文档以及其它相关文档已经上传到是云猿实战官网,可以通过下面官网进行获取项目!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/101213.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决:(error) ERR unknown command shutdow,with args beginning with

目录 一、遇到问题 二、出现问题的原因 三、解决办法 一、遇到问题 要解决连接redis闪退的问题,按照许多的方式去进行都没有成功,在尝试使用了以下的命名去尝试时候,发现了这个问题。 二、出现问题的原因 这是一个粗心大意导致的错误&am…

MySQL 用户管理操作

目录 一、用户管理概述 二、用户管理 1、创建用户 2、删除用户 三、账户密码管理 1、root用户修改自己的密码 2、ROOT用户修改其他普通用户密码 3、普通用户修改自己的密码 4、ROOT用户密码忘记解决办法 1)Linux系统 2)windows系统 四、用户权…

动态规划:删除并获得点数

题目来源:删除并获得点数 题目分析 题目分析: 从题目中可以获取到的条件是,如果选择了i位置,那么就必须删除与i-1和i1的位置的值相同的所有的值。 既然要删除相同的值,那么我们可以想,要不要先排序&…

部署问题集合(十九)linux设置Tomcat、Docker,以及使用脚本开机自启(亲测)

前言 因为不想每次启动虚拟机都要手动启动一遍这些东西,所以想要设置成开机自启的状态 设置Tomcat开机自启 创建service文件 vi /etc/systemd/system/tomcat.service添加如下内容,注意修改启动脚本和关闭脚本的地址 [Unit] DescriptionTomcat9068 A…

AP9235 dc-dc升压恒流电源驱动IC 2000ma SOT23-6

概述 AP9235B 系列是一款固定振荡频率、恒流输出的升压型DC/DC转换器,非常适合于移动电话、PDA、数码相机等电子产品的背光驱动。输出电压可达30V ,3.2V输入电压可以驱动六个串联LED, 2.5V输入电压可以驱动两路并联LED(每路串联…

物联网在制造业中的应用

制造业目前正在经历第四次工业革命,物联网、人工智能和机器人等技术进步正在推动行业的发展。研究表明,到2024年,全球制造商将在物联网解决方案上投资700亿美元,许多制造商正在实施物联网设备,以利用预测性维护和复杂的…

Android 12 源码分析 —— 应用层 一(SystemUI准备篇)

Android 12 源码分析 —— 应用层一(SystemUI准备篇) 在接下来的时间中,将会使用Pixel 3(blueline)作为研究对象,选用AOSP的android-12.0.0_r34分支作源代码。 先从android的应用层进行探析,然后慢慢深入android的fr…

CrossOver2023虚拟机工具最新版本功能介绍

想要在Mac OS中运行Windows程序,除了使用虚拟机外,使用CrossOver在Mac OS系统中运行Windows程序是非常不错的选择。CrossOver基于Wine技术,可以在Mac OS上运行许多Windows应用程序,而无需安装整个Windows操作系统。 本次发布的Cr…

【JAVA程序设计】基于SpringBoot+vue的在线考试系统-以计算机网络为例,可自行录入题库-附下载地址

基于SpringBootvue的在线考试系统-以计算机网络为例,可自行录入题库 一、项目简介二、开发环境三、项目技术四、功能结构五、运行截图六、功能实现七、数据库设计八、源码获取 一、项目简介 随着信息技术的迅猛发展,教育行业正面临着巨大的变革和挑战。…

基于MATLAB开发AUTOSAR软件应用层Code mapping专题-part 3 Paramter标签页介绍

这页是参数设置的界面,那首先要知道什么是参数,参数就是算法中的系数这些可以更改的变量,接下来就是要学习如何创建参数,如下图: 打开模型资源管理器 选择model Workspace标签,点击上边工具栏里的创建参数的按钮(红色箭头指向的按钮),添加一个新的参数K,值设置为4,数…

【Golang系统开发】搜索引擎(3) 压缩倒排索引表

写在前面 假设我们的数据集中有 800000 篇文章,每篇文章有 200 词条,每个词条有6个字符,倒排记录数目是 1 亿。那么如果我们倒排索引表中单单记录文档id,不记录文档内的频率和偏移信息。 那么 文档id 的长度就必须是 l o g 2 8…

Java动态代理、反射

文章目录 动态代理调用者--->代理--->对象为什么需要代理代理的详细实现过程代码详情 反射反射概念反射中常用的方法所有代码 动态代理 调用者—>代理—>对象 动态代理就是无侵入式的给代码增加新的功能,通过接口保证后面的对象和代理需要实现同一个接…

19万字智慧城市总体规划与设计方案WORD

导读:原文《19万字智慧城市总体规划与设计方案WORD》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 感知基础设施 感知基础设施架构由感知范围、感知手…

Excel/PowerPoint折线图从Y轴开始(两侧不留空隙)

默认Excel/PowerPoint折线图是这个样子的: 左右两侧都留了大块空白,很难看 解决方案 点击横坐标,双击,然后按下图顺序点击 效果

No mapping found for HTTP request with URI

参考: 参考地址 说明 ssm老项目,接过来别人的项目 临时建了一个Controller方便测试用的,结果访问掉不通,报: No mapping found for HTTP request with URIxxxx 这样的错误 解决办法 看了下web,xml配置 在 webmvc-config.xml 配置文件里面添加了几行配置 说明: com.iph.h…

实景无人直播平台是这么开发出来的

标题:实景无人直播平台开发:探索专业性、思考深度与逻辑性的全新体验 随着科技的不断进步,实景无人直播平台成为了当今数字娱乐领域的热门话题。这种新型娱乐方式将虚拟与现实相结合,为用户带来了前所未有的视听体验。本文将探…

搜狗拼音占用了VSCode及微信小程序开发者工具快捷键Ctrl + Shit + K 搜狗拼音截图快捷键

修改搜狗拼音的快捷键 右键--更多设置--属性设置--按键--系统功能快捷键--系统功能快捷键设置--取消Ctrl Shit K的勾选--勾选截屏并设置为Ctrl Shit A 微信开发者工具设置快捷键 右键--Command Palette--删除行 微信开发者工具快捷键 删除行:Ctrl Shit K 或…

【LeetCode】复写零

复写零 题目描述算法描述编程代码 链接: 复写零 题目描述 算法描述 编程代码 class Solution { public:void duplicateZeros(vector<int>& arr) {int n arr.size();int dest -1,cur 0;while(cur < n){if(arr[cur]){dest;}else{dest2;}cur;if(dest > n-1){…

数学建模大全及优缺点解读

分类模型 1、距离聚类&#xff08;系统聚类&#xff09;&#xff08;常用&#xff0c;需掌握&#xff09; 优点&#xff1a; ①将一批样本数据按照他们在性质上的亲密程度在没有先验知识的情况下自动进行分类 ②是一种探索性的分析方法&#xff0c;分类结果不一定相同 例如&am…

java面试基础 -- 深克隆 浅克隆

引例 说到java的克隆你还记得多少? 一说到克隆你可能就会想起来那个接口, 没错, 他就是Cloneable Cloneable是java里面内置的很常用的接口, 我们说 Object类中也有一个clone方法: 但是要想合法调用 clone 方法, 必须要先实现 Clonable 接口, 否则就会抛出 CloneNotSupportedEx…