STM32 F103C8T6学习笔记12:红外遥控—红外解码-位带操作

今日学习一下红外遥控的解码使用,红外遥控在日常生活必不可少,它的解码与使用也是学习单片机的一个小过程,我们将通过实践来实现它。

文章提供源码、测试工程下载、测试效果图。

目录

红外遥控原理:

 红外遥控特点:

红外发射装置:

 红外接收示意图:

 NEC协议:

程序设计:

程序实践目标:

位带操作:

定时器4初始化:

定时器4中断服务程序:

处理红外键盘:

主函数:

测试效果:

工程下载:


红外遥控原理:

下图就是红外遥控与1858红外接收头

 红外遥控特点:

优点:抗干扰能力强、信息可靠、功耗低、成本低、容易实现通信

缺点:距离只有几米

红外发射装置:

红外发射装置就比如遥控器,它是由键盘电路、红外编码电路、电源电路、红外发射电路组成的,红外发射电路在遥控器里是最特殊的,但它本质也是一个特殊的红外发光二极管,它在被激发时发出的是红外线,而不是普通二极管那样的可见光~

发射管红外波长:940Nm         载波频率:38KHZ

 红外接收示意图:

由图可知,发射端在左侧控制二极管发射红外线,右侧接收端转化为0和1的信号

 

 NEC协议:

配套的红外遥控器使用的是EC协议,EC码的位定义:
一个脉冲对应560us的连续载波,

一个逻辑1传输需要2.25ms(560us脉冲+1680us低电平),

一个逻辑0的传输需要 1.125ms(560us脉冲+560us低电平)。

 反码就是源码基础上取反的意思

程序设计上应该先判断是否有引导码,有了引导码,之后就开始接收对应地址码,控制码以及他们的反码等。

程序设计:

红外接收方面,主要是获取高低电平的信号,而有关NEC逻辑,0协议的转换,接收头已经做好了,会从信号端直接传来1,0的电平信号,因此我们只需捕捉这样的电平信号,将其转换为具体的值即可~

这里提供俩种思路:1.外部中断法      2.定时器捕获法    都可以使用

程序实践目标:

使用定时器4 通道4 捕获红外接收模块接受的遥控信号,并通过串口1打印给上位机

位带操作:

这里我随便找了一个STM32能用的位带地址操作的宏定义,将其放在.h文件即可:

因为STM32 F103 C8T6的引脚只有PA 与 PB 端口,因此我将多出来的注释掉了~~

//IO口地址映射
//输出寄存器
#define GPIOA_ODR_Addr (GPIOA_BASE+12)//0x4001280C
#define GPIOB_ODR_Addr (GPIOB_BASE+12)//0x40010C0C
//#define GPIOC_ODR_Addr (GPIOC_BASE+12)//0x4001100C
//#define GPIOD_ODR_Addr (GPIOD_BASE+12)//0x4001140C
//#define GPTOE_ODR_Addr (GPIOE_BASE+12)//0x4001180C
//#define GPIOF_ODR_Addr (GPIOF_BASE+12)//0x40011A0C
//#define GPIOG_ODR_Addr (GPIOG_BASE+12)//0x40011E0C
//输入寄存器
#define GPIOA_IDR_Addr (GPIOA_BASE+8)//0x40010808
#define GPIOB_IDR_Addr (GPIOB_BASE+8)//0x40010C08
//#define GPIOC_IDR_Addr (GPIOC_BASE+8)//0x40011008
//#define GPIOD_IDR_Addr (GPIOD_BASE+8)//0x40011408
//#define GPIOE_IDR_Addr (GPIOE_BASE+8)//0x40011808
//#define GPTOF_IDR_Addr (GPIOF_BASE+8)//0x40011A08
//#define GPTOG_IDR_Addr (GPIOG_BASE+8)//0x40011E08//IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n)	BIT_ADDR(GPIOA_ODR_Addr,n)//输出
#define PAin(n) 	BIT_ADDR (GPIOA_IDR_Addr,n)//输入#define PBout(n) 	BIT_ADDR(GPIOB_ODR_Addr,n)//输出
#define PBin(n) 	BIT_ADDR(GPIOB_IDR_Addr,n)//输入//#define PCout(n) 	BIT_ADDR(GPIOC_ODR_Addr,n)//输出
//#define PCin(n) 	BIT_ADDR(GPIOC_IDR_Addr,n)//输入
// 
//#define PDout(n) 	BIT_ADDR(GPIOD_ODR_Addr,n)//输出
//#define PDin(n) 	BIT_ADDR(GPIOD_IDR_Addr,n)//输入
// 
//#define PEout(n) 	BIT_ADDR(GPIOE_ODR_Addr,n)//输出
//#define PEin(n) 	BIT_ADDR(GPIOE_IDR_Addr,n)//输入
// 
//#define PFout(n)	BIT_ADDR(GPIOF_ODR_Addr,n)//输出
//#define PFin(n)		BIT_ADDR(GPIOF_IDR_Addr,n)//输入
// 
//#define PGout(n)	BIT_ADDR(GPIOG_oDR_Addr,n)//输出
//#define PGin(n) 	BIT_ADDR(GPIOG_IDR_Addr,n)//输入

定时器4初始化:

//红外遥控初始化
//设置IO以及定时器4的输入捕获
void Remote_Init(void)
{GPIO_InitTypeDef GPIO_InitStructure;NVIC_InitTypeDef NVIC_InitStructure;TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;TIM_ICInitTypeDef  TIM_ICInitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE); //使能PORTB时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE);	//TIM4 时钟使能GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;				 //PB9 输入GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; 		//上拉输入GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);GPIO_SetBits(GPIOB,GPIO_Pin_9);	//初始化GPIOB.9TIM_TimeBaseStructure.TIM_Period = 10000; //设定计数器自动重装值 最大10ms溢出TIM_TimeBaseStructure.TIM_Prescaler =(72-1); 	//预分频器,1M的计数频率,1us加1.TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_timTIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); //根据指定的参数初始化TIMxTIM_ICInitStructure.TIM_Channel = TIM_Channel_4;  // 选择输入端 IC4映射到TI4上TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;	//上升沿捕获TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;	 //配置输入分频,不分频TIM_ICInitStructure.TIM_ICFilter = 0x03;//IC4F=0011 配置输入滤波器 8个定时器时钟周期滤波TIM_ICInit(TIM4, &TIM_ICInitStructure);//初始化定时器输入捕获通道TIM_Cmd(TIM4,ENABLE ); 	//使能定时器4NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn;  //TIM3中断NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;  //先占优先级0级NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;  //从优先级3级NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能NVIC_Init(&NVIC_InitStructure);  //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器TIM_ITConfig( TIM4,TIM_IT_Update|TIM_IT_CC4,ENABLE);//允许更新中断 ,允许CC4IE捕获中断
}//遥控器接收状态
//[7]:收到了引导码标志
//[6]:得到了一个按键的所有信息
//[5]:保留
//[4]:标记上升沿是否已经被捕获
//[3:0]:溢出计时器
u8 	RmtSta=0;
u16 Dval;		//下降沿时计数器的值
u32 RmtRec=0;	//红外接收到的数据
u8  RmtCnt=0;	//按键按下的次数
//定时器4中断服务程序
void TIM4_IRQHandler(void)
{if(TIM_GetITStatus(TIM4,TIM_IT_Update)!=RESET)//计时器更新中断{if(RmtSta&0x80)								//上次有数据被接收到了{RmtSta&=~0X10;							//取消上升沿已经被捕获标记if((RmtSta&0X0F)==0X00)RmtSta|=1<<6;	//标记已经完成一次按键的键值信息采集if((RmtSta&0X0F)<14)RmtSta++;else{RmtSta&=~(1<<7);					//清空引导标识RmtSta&=0XF0;						//清空计数器}}}if(TIM_GetITStatus(TIM4,TIM_IT_CC4)!=RESET)//捕获中断{if(RDATA)//上升沿捕获{TIM_OC4PolarityConfig(TIM4,TIM_ICPolarity_Falling);						//CC4P=1	设置为下降沿捕获TIM_SetCounter(TIM4,0);							//清空定时器值RmtSta|=0X10;							//标记上升沿已经被捕获} else //下降沿捕获{Dval=TIM_GetCapture4(TIM4);					//读取CCR4也可以清CC4IF标志位TIM_OC4PolarityConfig(TIM4,TIM_ICPolarity_Rising);				//CC4P=0	设置为上升沿捕获if(RmtSta&0X10)							//完成一次高电平捕获{if(RmtSta&0X80)//接收到了引导码{if(Dval>300&&Dval<800)			//560为标准值,560us{RmtRec<<=1;					//左移一位.RmtRec|=0;					//接收到0} else if(Dval>1400&&Dval<1800)	//1680为标准值,1680us{RmtRec<<=1;					//左移一位.RmtRec|=1;					//接收到1} else if(Dval>2200&&Dval<2600)	//得到按键键值增加的信息 2500为标准值2.5ms{RmtCnt++; 					//按键次数增加1次RmtSta&=0XF0;				//清空计时器}}else if(Dval>4200&&Dval<4700)		//4500为标准值4.5ms{RmtSta|=1<<7;					//标记成功接收到了引导码RmtCnt=0;						//清除按键次数计数器}}RmtSta&=~(1<<4);//取消上升沿已经被捕获标记}}TIM_ClearITPendingBit(TIM4,TIM_IT_Update|TIM_IT_CC4);
}

定时器4中断服务程序:


//遥控器接收状态
//[7]:收到了引导码标志
//[6]:得到了一个按键的所有信息
//[5]:保留
//[4]:标记上升沿是否已经被捕获
//[3:0]:溢出计时器
u8 	RmtSta=0;
u16 Dval;		//下降沿时计数器的值
u32 RmtRec=0;	//红外接收到的数据
u8  RmtCnt=0;	//按键按下的次数
//定时器4中断服务程序
void TIM4_IRQHandler(void)
{if(TIM_GetITStatus(TIM4,TIM_IT_Update)!=RESET)//计时器更新中断{if(RmtSta&0x80)								//上次有数据被接收到了{RmtSta&=~0X10;							//取消上升沿已经被捕获标记if((RmtSta&0X0F)==0X00)RmtSta|=1<<6;	//标记已经完成一次按键的键值信息采集if((RmtSta&0X0F)<14)RmtSta++;else{RmtSta&=~(1<<7);					//清空引导标识RmtSta&=0XF0;						//清空计数器}}}if(TIM_GetITStatus(TIM4,TIM_IT_CC4)!=RESET)//捕获中断{if(RDATA)//上升沿捕获{TIM_OC4PolarityConfig(TIM4,TIM_ICPolarity_Falling);						//CC4P=1	设置为下降沿捕获TIM_SetCounter(TIM4,0);							//清空定时器值RmtSta|=0X10;							//标记上升沿已经被捕获} else //下降沿捕获{Dval=TIM_GetCapture4(TIM4);					//读取CCR4也可以清CC4IF标志位TIM_OC4PolarityConfig(TIM4,TIM_ICPolarity_Rising);				//CC4P=0	设置为上升沿捕获if(RmtSta&0X10)							//完成一次高电平捕获{if(RmtSta&0X80)//接收到了引导码{if(Dval>300&&Dval<800)			//560为标准值,560us{RmtRec<<=1;					//左移一位.RmtRec|=0;					//接收到0} else if(Dval>1400&&Dval<1800)	//1680为标准值,1680us{RmtRec<<=1;					//左移一位.RmtRec|=1;					//接收到1} else if(Dval>2200&&Dval<2600)	//得到按键键值增加的信息 2500为标准值2.5ms{RmtCnt++; 					//按键次数增加1次RmtSta&=0XF0;				//清空计时器}}else if(Dval>4200&&Dval<4700)		//4500为标准值4.5ms{RmtSta|=1<<7;					//标记成功接收到了引导码RmtCnt=0;						//清除按键次数计数器}}RmtSta&=~(1<<4);//取消上升沿已经被捕获标记}}TIM_ClearITPendingBit(TIM4,TIM_IT_Update|TIM_IT_CC4);
}

处理红外键盘:

//处理红外键盘
//返回值:
//	 0,没有任何按键按下
//其他,按下的按键键值.
u8 Remote_Scan(void)
{u8 sta=0;u8 t1,t2;if(RmtSta&(1<<6))//得到一个按键的所有信息了{t1=RmtRec>>24;			//得到地址码t2=(RmtRec>>16)&0xff;	//得到地址反码if((t1==(u8)~t2)&&t1==REMOTE_ID)//检验遥控识别码(ID)及地址{t1=RmtRec>>8;t2=RmtRec;if(t1==(u8)~t2)sta=t1;//键值正确}if((sta==0)||((RmtSta&0X80)==0))//按键数据错误/遥控已经没有按下了{RmtSta&=~(1<<6);//清除接收到有效按键标识RmtCnt=0;		//清除按键次数计数器}}return sta;
}

主函数:

 这里主函数为了防止打印反馈太频繁,改为定时器2  每100ms赋值一次Remote_temp变量 红外的接收值

#include "main.h"char Remote_temp,Remote_cnt;int main(void)
{	init_ALL();     //初始化所有函数:printf("HELLO \r\n");while(1){	if(Remote_temp!=0){printf("Remote_temp(DEX)=%d\r\n",Remote_temp); //十进制打印一次键值printf("Remote_temp(HEX)=%x\r\n",Remote_temp); //HEX 16 进制打印一次键值			}	}	
}//初始化所有函数:
void init_ALL(void)
{Usart1_Init(115200);SysTick_Init(72);         //初始化滴答计时器Timer2_Init();						//初始化定时器2Remote_Init();            //红外按键初始化
}//定时器2中断服务函数
void TIM2_IRQHandler(void)
{if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET){		if(++Remote_cnt==10)     //100ms赋值一次红外键值{Remote_cnt=0;		Remote_temp=Remote_Scan();}TIM_ClearITPendingBit(TIM2, TIM_IT_Update);//清出中断寄存器标志位,用于退出中断}
}

测试效果:

 

工程下载:

https://download.csdn.net/download/qq_64257614/88241288?spm=1001.2014.3001.5503

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/101886.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt+C++串口调试接收发送数据曲线图

程序示例精选 QtC串口调试接收发送数据曲线图 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对<<QtC串口调试接收发送数据曲线图>>编写代码&#xff0c;代码整洁&#xff0c;规则&…

探索GreatADM:图形化部署MGR的全新体验

摘要&#xff1a; 在DBA的日常工作中&#xff0c;快速部署数据库高可用架构&#xff0c;且标准化地入网部署数据库是一项重要的基础任务。本文将介绍常见的部署MGR的方式&#xff0c;并重点介绍万里数据库的GreatADM数据库管理平台进行图形化、可视化、标准化的部署过程&#x…

vue 学习笔记 简单实验

1.代码(html) <script src"https://unpkg.com/vuenext" rel"external nofollow" ></script> <div id"counter">Counter: {{ counter }} </div> <script> const Counter {data() {return {counter: 5}} } Vue.cr…

二、pikachu之SQL注入(2)

文章目录 1、delete注入2、http header注入3、布尔盲注4、时间盲注 4、宽字节注入 1、delete注入 &#xff08;1&#xff09;寻找传参页面&#xff0c;在删除留言的时候&#xff0c;发现是get传参&#xff1b; &#xff08;2&#xff09;判断是否存在注入点&#xff0c;命令&…

Shell语法揭秘:深入探讨常见Linux Shell之间的语法转换

深入探讨常见Linux Shell之间的语法转换 一、引言二、Linux常用Shell&#xff1a;Bash、Zsh、Ksh、Csh、Tcsh和Fish的简介2.1、Bash、Zsh、Ksh、Csh、Tcsh和Fish的特点和用途2.2、语法差异是常见Shell之间的主要区别 三、变量和环境设置的语法差异3.1、变量定义和使用的不同语法…

Redis——set类型详解

概要 Set&#xff08;集合&#xff09;&#xff0c;将一些有关联的数据放到一起&#xff0c;集合中的元素是无序的&#xff0c;并且集合中的元素是不能重复的 之前介绍的list就是有序的&#xff0c;对于列表来说[1, 2, 3] 和 [2, 1, 3]是两个不同的列表&#xff0c;而对于集合…

GraphScope,开源图数据分析引擎的领航者

文章首发地址 GraphScope是一个开源的大规模图数据分析引擎&#xff0c;由Aliyun、阿里巴巴集团和华为公司共同开发。GraphScope旨在为大规模图数据处理和分析提供高性能、高效率的解决方案。 Github地址&#xff1a; https://github.com/alibaba/GraphScope GraphScope 的重…

开发第一个gPRC的开发

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

网络综合布线实训室方案(2023版)

综合布线实训室概述 随着智慧城市的蓬勃发展,人工智能、物联网、云计算、大数据等新兴行业也随之崛起,网络布线系统作为现代智慧城市、智慧社区、智能建筑、智能家居、智能工厂和现代服务业的基础设施和神经网络,发挥着重要作用。实践表明,网络系统故障的70%发生在布线系统,直接…

苹果手机桌面APP带云图标有个箭头,过一段时间经常要下载才能使用APP

环境&#xff1a; IPhone 11 IOS13.0 问题描述&#xff1a; 苹果手机桌面APP带云图标有个箭头&#xff0c;过一段时间经常要下载才能使用APP 解决方案&#xff1a; 1.打开设置&#xff0c;往下找到iTunes Store与App Store 2.找到下面卸载未使用的APP 关闭按钮

最优的家电设备交互方式是什么?详解家电设备交互的演进之旅

家电&#xff0c;在人们的日常生活中扮演着不可或缺的角色&#xff0c;也是提升人们幸福感的重要组成部分&#xff0c;那你了解家电的发展史吗&#xff1f; 70年代 结婚流行“四大件”&#xff1a;手表、自行车、缝纫机&#xff0c;收音机&#xff0c;合成“三转一响”。 80年…

问题描述:在Windows下没有预装ImageMagick工具

问题描述:在Windows下没有预装ImageMagick工具 # WInR输入cmd回车进入命令行,执行以下命令查看版本信息 magick --version没有预装ImageMagick工具 解决方案&#xff1a;下载安装ImageMagick 官网下载:ImageMagick-7.1.1-15-Q16-x64-dll.exe 下载之后&#xff0c;一路下一步…

MySQL表的约束

MySQL表的约束 约束的概念空属性默认值列描述zerofill主键自增长唯一键外键 约束的概念 在正式谈MySQL表的约束之前&#xff0c;我们先来简单理解一下约束这个概念; 约束&#xff1a;意思是指带有束缚、限制、管束等意思&#xff1b; 大白话就是说:规定了那些事情你不能干&…

如何大幅提高遥感影像分辨率(Python+MATLAB)

前言&#xff1a; 算法&#xff1a;NSCT算法&#xff08;非下采样变换&#xff09; 数据&#xff1a;Landsat8 OLI 遥感图像数据 编程平台&#xff1a;MATLABPython 论文参考&#xff1a;毛克.一种快速的全色和多光谱图像融合算法[J].测绘科学,2016,41(01):151-15398.DOI:10.1…

k8s deployment创建pod流程图

参考 k8s 创建pod和deployment的流程 - SoulChild随笔记

TCP的可靠性之道:确认重传和流量控制

TCP 全称为 Transmission Control Protocol&#xff08;传输控制协议&#xff09;&#xff0c;是一种面向连接的、可靠的、基于字节流的传输层通信协议&#xff0c;其中可靠性是相对于其他传输协议的优势点。TCP 为了确保数据传输的可靠性主要做了以下几点&#xff1a; 发送确…

【vue3+ts项目】配置husky+配置commitlint

上一篇文章中配置了eslint校验代码工具 【vue3ts项目】配置eslint校验代码工具&#xff0c;eslintprettierstylelint 1、配置husky 每次手动执行命令才能格式化代码&#xff0c;如果有人没有格式化就提交到远程仓库&#xff0c;这个规范就起不到作用了&#xff0c;所有需要强…

Java日志框架概览

SLF4J 提供统一的日志门面API&#xff0c;即图中紫色部分&#xff0c;实现中立的日志记录API 桥接功能&#xff0c;蓝色部分&#xff0c;把各种日志框架API&#xff08;绿色部分&#xff09;桥接到SLF4J API。这样即便你的程序中使用各种日志API记录日志&#xff0c;最终都可桥…

带你了解SpringBoot---开启Durid 监控

文章目录 数据库操作--开启Durid 监控整合Druid 到Spring-Boot官方文档基本介绍Durid 基本使用代码实现 Durid 监控功能-SQL 监控需求:SQL 监控数据SQL 监控数据-测试页面 Durid 监控功能-Web 关联监控需求:Web 关联监控配置-Web 应用、URI 监控重启项目 Durid 监控功能-SQL 防…

进程调度和进程切换——《王道考研》

一、王道书咋说 二、chatgpt咋说 进程调度和进程切换是多道程序操作系统中两个关键的概念&#xff0c;它们在处理多个进程时起着不同的作用。 2.1进程调度是指&#xff1a; 操作系统根据一定的调度算法&#xff0c;从就绪态的进程队列中选择一个进程来占用CPU资源&#xff0…