2023国赛数学建模思路 - 案例:粒子群算法

文章目录

  • 1 什么是粒子群算法?
  • 2 举个例子
  • 3 还是一个例子
  • 算法流程
  • 算法实现
  • 建模资料

# 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 什么是粒子群算法?

粒子群算法(Particle Swarm Optimization,PSO)是一种模仿鸟群、鱼群觅食行为发展起来的一种进化算法。其概念简单易于编程实现且运行效率高、参数相对较少,应用非常广泛。粒子群算法于1995年提出,距今(2019)已有24年历史。
  
  粒子群算法中每一个粒子的位置代表了待求问题的一个候选解。每一个粒子的位置在空间内的好坏由该粒子的位置在待求问题中的适应度值决定。每一个粒子在下一代的位置有其在这一代的位置与其自身的速度矢量决定,其速度决定了粒子每次飞行的方向和距离。在飞行过程中,粒子会记录下自己所到过的最优位置 P,群体也会更新群体所到过的最优位置G 。粒子的飞行速度则由其当前位置、粒子自身所到过的最优位置、群体所到过的最优位置以及粒子此时的速度共同决定。

在这里插入图片描述

2 举个例子

在这里插入图片描述
在一个湖中有两个人他们之间可以通信,并且可以探测到自己所在位置的最低点。初始位置如上图所示,由于右边比较深,因此左边的人会往右边移动一下小船。

在这里插入图片描述

现在左边比较深,因此右边的人会往左边移动一下小船

一直重复该过程,最后两个小船会相遇

在这里插入图片描述
得到一个局部的最优解
在这里插入图片描述将每个个体表示为粒子。每个个体在某一时刻的位置表示为,x(t),方向表示为v(t)

在这里插入图片描述

p(t)为在t时刻x个体的自己的最优解,g(t)为在t时刻所有个体的最优解,v(t)为个体在t时刻的方向,x(t)为个体在t时刻的位置

在这里插入图片描述

下一个位置为上图所示由x,p,g共同决定了

在这里插入图片描述

种群中的粒子通过不断地向自身和种群的历史信息进行学习,从而可以找到问题的最优解。

3 还是一个例子

粒子群算法是根据鸟群觅食行为衍生出的算法。现在,我们的主角换成是一群鸟。
在这里插入图片描述

小鸟们的目标很简单,要在这一带找到食物最充足的位置安家、休养生息。它们在这个地方的搜索策略如下:
  1. 每只鸟随机找一个地方,评估这个地方的食物量。
  2. 所有的鸟一起开会,选出食物量最多的地方作为安家的候选点G。
  3. 每只鸟回顾自己的旅程,记住自己曾经去过的食物量最多的地方P。
  4. 每只鸟为了找到食物量更多的地方,于是向着G飞行,但是呢,不知是出于选择困难症还是对P的留恋,或者是对G的不信任,小鸟向G飞行时,时不时也向P飞行,其实它自己也不知道到底是向G飞行的多还是向P飞行的多。
  5. 又到了开会的时间,如果小鸟们决定停止寻找,那么它们会选择当前的G来安家;否则继续2->3->4->5来寻找它们的栖息地。

在这里插入图片描述

上图描述的策略4的情况,一只鸟在点A处,点G是鸟群们找到过的食物最多的位置,点P是它自己去过的食物最多的地点。V是它现在的飞行速度(速度是矢量,有方向和大小),现在它决定向着P和G飞行,但是这是一只佛系鸟,具体飞多少随缘。如果没有速度V,它应该飞到B点,有了速度V的影响,它的合速度最终使它飞到了点C,这里是它的下一个目的地。如果C比P好那么C就成了下一次的P,如果C比G好,那么就成了下一次的G。

算法流程

在这里插入图片描述

算法实现

这里学长用python来给大家演示使用粒子群解函数最优解

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
import random# 定义“粒子”类
class parti(object):def __init__(self, v, x):self.v = v                    # 粒子当前速度self.x = x                    # 粒子当前位置self.pbest = x                # 粒子历史最优位置class PSO(object):def __init__(self, interval, tab='min', partisNum=10, iterMax=1000, w=1, c1=2, c2=2):self.interval = interval                                            # 给定状态空间 - 即待求解空间self.tab = tab.strip()                                              # 求解最大值还是最小值的标签: 'min' - 最小值;'max' - 最大值self.iterMax = iterMax                                              # 迭代求解次数self.w = w                                                          # 惯性因子self.c1, self.c2 = c1, c2                                           # 学习因子self.v_max = (interval[1] - interval[0]) * 0.1                      # 设置最大迁移速度#####################################################################self.partis_list, self.gbest = self.initPartis(partisNum)                 # 完成粒子群的初始化,并提取群体历史最优位置self.x_seeds = np.array(list(parti_.x for parti_ in self.partis_list))    # 提取粒子群的种子状态 ###self.solve()                                                              # 完成主体的求解过程self.display()                                                            # 数据可视化展示def initPartis(self, partisNum):partis_list = list()for i in range(partisNum):v_seed = random.uniform(-self.v_max, self.v_max)x_seed = random.uniform(*self.interval)partis_list.append(parti(v_seed, x_seed))temp = 'find_' + self.tabif hasattr(self, temp):                                             # 采用反射方法提取对应的函数gbest = getattr(self, temp)(partis_list)else:exit('>>>tab标签传参有误:"min"|"max"<<<')return partis_list, gbestdef solve(self):for i in range(self.iterMax):for parti_c in self.partis_list:f1 = self.func(parti_c.x)# 更新粒子速度,并限制在最大迁移速度之内parti_c.v = self.w * parti_c.v + self.c1 * random.random() * (parti_c.pbest - parti_c.x) + self.c2 * random.random() * (self.gbest - parti_c.x)if parti_c.v > self.v_max: parti_c.v = self.v_maxelif parti_c.v < -self.v_max: parti_c.v = -self.v_max# 更新粒子位置,并限制在待解空间之内if self.interval[0] <= parti_c.x + parti_c.v <=self.interval[1]:parti_c.x = parti_c.x + parti_c.velse:parti_c.x = parti_c.x - parti_c.vf2 = self.func(parti_c.x)getattr(self, 'deal_'+self.tab)(f1, f2, parti_c)             # 更新粒子历史最优位置与群体历史最优位置def func(self, x):                                                       # 状态产生函数 - 即待求解函数value = np.sin(x**2) * (x**2 - 5*x)return valuedef find_min(self, partis_list):                                         # 按状态函数最小值找到粒子群初始化的历史最优位置parti = min(partis_list, key=lambda parti: self.func(parti.pbest))return parti.pbestdef find_max(self, partis_list):parti = max(partis_list, key=lambda parti: self.func(parti.pbest))   # 按状态函数最大值找到粒子群初始化的历史最优位置return parti.pbestdef deal_min(self, f1, f2, parti_):if f2 < f1:                          # 更新粒子历史最优位置parti_.pbest = parti_.xif f2 < self.func(self.gbest):self.gbest = parti_.x            # 更新群体历史最优位置def deal_max(self, f1, f2, parti_):if f2 > f1:                          # 更新粒子历史最优位置parti_.pbest = parti_.xif f2 > self.func(self.gbest):self.gbest = parti_.x            # 更新群体历史最优位置def display(self):print('solution: {}'.format(self.gbest))plt.figure(figsize=(8, 4))x = np.linspace(self.interval[0], self.interval[1], 300)y = self.func(x)plt.plot(x, y, 'g-', label='function')plt.plot(self.x_seeds, self.func(self.x_seeds), 'b.', label='seeds')plt.plot(self.gbest, self.func(self.gbest), 'r*', label='solution')plt.xlabel('x')plt.ylabel('f(x)')plt.title('solution = {}'.format(self.gbest))plt.legend()plt.savefig('PSO.png', dpi=500)plt.show()plt.close()if __name__ == '__main__':PSO([-9, 5], 'max')

效果
在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/103076.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

业务系统架构实践总结

我从2015年起至今2022年&#xff0c;在业务平台&#xff08;结算、订购、资金&#xff09;、集团财务平台&#xff08;应收应付、账务核算、财资、财务分析、预算&#xff09;、本地生活财务平台&#xff08;发票、结算、预算、核算、稽核&#xff09;所经历的业务系统研发实践…

网络安全---Ring3下动态链接库.so函数劫持

一、动态链接库劫持原理 1.1、原理 Unix操作系统中&#xff0c;程序运行时会按照一定的规则顺序去查找依赖的动态链接库&#xff0c;当查找到指定的so文件时&#xff0c;动态链接器(/lib/ld-linux.so.X)会将程序所依赖的共享对象进行装载和初始化&#xff0c;而为什么可以使用…

Git学习笔记

Git学习笔记 文章目录 Git学习笔记一、版本控制二、Linux基础命令三、Git的环境配置四、Git的基本理论&#xff08;核心&#xff09;五、Git项目的搭建六、Git文件操作七、使用码云八、IDEA集成git九、Git分支 一、版本控制 什么是版本控制 版本控制&#xff08;Revision contr…

Linux线程 --- 生产者消费者模型(C语言)

在学习完线程相关的概念之后&#xff0c;本节来认识一下Linux多线程相关的一个重要模型----“ 生产者消费者模型” 本文参考&#xff1a; Linux多线程生产者与消费者_红娃子的博客-CSDN博客 Linux多线程——生产者消费者模型_linux多线程生产者与消费者_两片空白的博客-CSDN博客…

RedisTemplate和StringRedisTemplate的区别、对比

学习 Jedis、RedisTemplate、StringRedisTemplate之间的比较 博客中提到&#xff1a;一. Jedis是Redis官方推荐的面向Java的操作Redis的客户端。 二. RedisTemplate,StringRedisTemplate是SpringDataRedis中对JedisApi的高度封装。SpringDataRedis相对于Jedis来说可以方便地更…

想解锁禁用的iPhone?除了可以使用电脑之外,这里还有不需要电脑的方法!

多次输入错误的密码后,iPhone将显示“iPhone已禁用”。这种情况看起来很棘手,因为你现在不能用iPhone做任何事情。对于这种情况,我们提供了几种有效的方法来帮助你在最棘手的问题中解锁禁用的iPhone。你可以选择使用或不使用电脑来解锁禁用的iPhone。 一、为什么你的iPhone…

Mysql数据库管理

一、数据库基本概念 数据 使用一些介质进行存储&#xff0c;例如文字存在文档中 数据库可以完成数据持久化保存快速提取 那么想要实现以上功能&#xff0c;需要编写一系列的规则--》SQL语句 SQL语句 按功能分类: 增删改查 数据库类型&#xff1a;关系型数据库、非关系型数据库…

javaScript:七夕特辑-对象的认识与应用(包含日期对象及相关案例)

目录 一.前言 二.认识对象 在js中声明对象的方法 1.直接使用{}声明对象 2.使用构造函数创建对象 获取属性的值 执行对象方法 解释 三.对象的应用 代码 效果图 ​编辑 四.日期对象 1.Date 日期对象 2. getFullYear() 获取当前年份 3.getMonth() 获取当前日期对象…

协议的分层结构

1.1TCP/IP 协议 为了使各种不同的计算机之间可以互联&#xff0c;ARPANet指定了一套计算机通信协议&#xff0c;即TCP/IP 协议(族). 注意TCP /IP 协议族指的不只是这两个协议 而是很多协议&#xff0c; 只要联网的都使用TCP/IP协议族 为了减少 协议设计的复杂度 &#xff0c;大…

每日后端面试5题 第八天

1.UDP和TCP协议的区别 1.UDP无连接&#xff0c;速度快&#xff0c;安全性低&#xff0c;适合高速传输、实时广播通信等。 2.TCP面向连接&#xff0c;速度慢&#xff0c;安全性高&#xff0c;适合传输质量要求高、大文件等的传输&#xff0c;比如邮件发送等。 &#xff08;还…

Grafana 安装配置教程

Grafana 安装配置教程 一、介绍二、Grafana 安装及配置2.1 下载2.2 安装2.2.1 windows安装 - 图形界面2.2.2 linux安装 - 安装脚本 三、Grafana的基本配置3.1 登录3.2 Grafana设置中文 四、grafana基本使用 一、介绍 Grafana是一个通用的可视化工具。对于Grafana而言&#xff0…

基于IDEA使用maven创建hibernate项目

1、创建maven项目 2、导入hibernate需要的jar包 <!--hibernate核心依赖--><dependency><groupId>org.hibernate</groupId><artifactId>hibernate-core</artifactId><version>5.4.1.Final</version></dependency><!--…

ChatGPT影响大学生思想行为模式的三个维度

ChatGPT作为新一代AI技术的代表&#xff0c;深刻嵌入并影响着大学生的日常学习和生活场景&#xff0c;其在提升学习研究效率、拓宽认知阈限、重塑人机互动模式等方面带来极大突破&#xff0c;也会对大学生的思想行为模式产生潜在的影响&#xff0c;这些影响可以从个体、关系与社…

MinDoc:针对IT团队的文档、笔记系统

作为一名IT从业者&#xff0c;无论是在公司团队中&#xff0c;还是在平时自己写一些笔记、博客等文档&#xff0c;我都习惯使用markdown来进行书写。在使用过许多支持markdown语法的系统或软件&#xff08;如Typora、未知、我来、思源、觅道等&#xff09;后&#xff0c;我总觉…

C++信息学奥赛1135:配对碱基链

#include <iostream> #include <string> using namespace std;int main() {string arr;cin >> arr; // 输入字符串for (int i 0; i < arr.length(); i) {if (arr[i] A) {cout << "T"; // 如果当前字符是A&#xff0c;则输出T}else if…

安防监控视频平台EasyCVR视频汇聚平台和税务可视化综合管理应用方案

一、方案概述 为了确保税务执法的规范性和高效性&#xff0c;国家税务总局要求全面推行税务系统的行政执法公示制度、执法全过程记录制度和重大执法决定法制审核制度。为此&#xff0c;需要全面推行执法全过程记录制度&#xff0c;并推进信息化建设&#xff0c;实现执法全过程的…

整理mongodb文档:聚合管道

个人博客 整理mongodb文档:聚合管道 个人博客&#xff0c;求关注&#xff0c;电脑版看体验更加&#xff0c;如果不够清晰&#xff0c;请指出来&#xff0c;谢谢 文章概叙 文章主要通过几个常用的聚合表达式来介绍聚合管道的使用&#xff0c;以及从索引的角度来介绍聚合管道…

MQTT 常用客户端库介绍 (全面涵盖c,c++,java,c#,python)

MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;是一种轻量级的通信协议&#xff0c;被广泛应用于物联网和分布式系统中。它以其简单、可靠和高效的特性而备受推崇&#xff0c;成为连接设备和应用程序的首选协议。MQTT的重要性不言而喻&#xff0c;它为实时通…

无涯教程-Perl - wait函数

描述 该函数等待子进程终止,返回已故进程的进程ID。进程的退出状态包含在$?中。 语法 以下是此函数的简单语法- wait返回值 如果没有子进程,则此函数返回-1,否则将显示已故进程的进程ID Perl 中的 wait函数 - 无涯教程网无涯教程网提供描述该函数等待子进程终止,返回已故…

云计算技术应用专业实训室建设方案

一、 云计算技术应用系统概述 云计算技术是一种基于互联网的计算模式&#xff0c;通过将计算资源&#xff08;如服务器、存储、数据库、网络、软件等&#xff09;提供为一种服务&#xff0c;使用户能够按需获取和使用这些资源&#xff0c;而无需拥有和管理实际的物理设备。云计…