STM32使用PID调速

STM32使用PID调速

PID原理

image-20230824191607500

PID算法是一种闭环控制系统中常用的算法,它结合了比例(P)、积分(I)和微分(D)三个环节,以实现对系统的控制。它的目的是使

控制系统的输出值尽可能接近预期的目标值。

在PID算法中,控制器通过不断地测量实际输出值和目标值之间的误差,并使用比例、积分和微分部分的控制参数来调整控制系统的输出

值。比例部分根据误差的大小进行控制,其输出与误差成正比。积分部分根据误差的历史累积值进行控制,其输出与误差积分的结果成正

比。微分部分根据误差的变化率进行控制,其输出与误差变化率成正比。

将这三个部分组合起来,就得到了PID算法。PID控制器不断地对系统进行测量和调整,直到实际输出值接近目标值为止。

连续性公式
u ( t ) = K p ∗ e ( t ) + K i ∗ ∫ 0 t e ( t ) d t + k d ∗ d e ( t ) d t u(t)=K_{p}*e(t)+K_{i}*\int_{0}^{t} e(t)dt+k{d}*\frac{de(t)}{dt} u(t)=Kpe(t)+Ki0te(t)dt+kddtde(t)
离散性公式
u ( t ) = K p ∗ e ( t ) + K i ∗ ∑ n = 0 t e ( n ) + k d ∗ [ e ( t ) − e ( t − 1 ) ] u(t)=K_{p}*e(t)+K_{i}*\sum_{n=0}^{t} e(n)+k{d}*[e(t)-e(t-1)] u(t)=Kpe(t)+Kin=0te(n)+kd[e(t)e(t1)]

  • 比例系数Kp:
    比例系数Kp的作用是根据当前误差的大小来调整控制器的输出。Kp越大,控制器对误差的灵敏度越高,系统的响应速度越快,但可能会出现过大的超调。Kp越小,控制器对误差的灵敏度越低,系统的响应速度越慢,但系统的稳定性较好。(快)
  • 积分系数Ki:
    积分系数Ki的作用是根据误差的历史累积值来调整控制器的输出。Ki越大,控制器对误差的累积量越大,系统的稳态误差消除越快,但可能会出现过大的超调。Ki越小,控制器对误差的累积量越小,系统的稳态误差消除越慢,但系统的稳定性较好。(准)
  • 微分系数Kd:
    微分系数Kd的作用是根据误差的变化率来调整控制器的输出。Kd越大,控制器对误差变化率的灵敏度越高,系统的响应速度越快,但可能会出现过大的超调。Kd越小,控制器对误差变化率的灵敏度越低,系统的响应速度越慢,但系统的稳定性较好。(稳)

PID使用

在工程文件中新建

pid.h

//pid.h
#ifndef __BSP_PID_H
#define	__BSP_PID_H
#include "stm32f1xx.h"
#include "usart.h"
#include <stdio.h>
#include <stdlib.h>
#include "tim.h"/*pid*/
typedef struct
{float target_val;float actual_val;float err;float err_last;float err_sum;float Kp,Ki,Kd;
}PID_struct;void PID_Init(PID_struct *pid);
float P_realize(PID_struct * pid, float actual_val);
float PI_realize(PID_struct * pid, float actual_val);
float PID_realize(PID_struct * pid, float actual_val);#endif

结构体中储存pid的参数目标值、当前值、误差、kp、ki、kd等等

pid.c

//pid.c
#include "pid.h"void PID_Init(PID_struct *pid)
{printf("PID_Init begin \n");pid->target_val=1.0;pid->actual_val=0.0;//误差pid->err=0.0;pid->err_last=0.0;pid->err_sum=0.0;//需要自己调节pid->Kp = 120.0;  //快pid->Ki = 5.0;   //准pid->Kd = 0.3;	//稳
}
float P_realize(PID_struct * pid, float actual_val)
{pid->actual_val = actual_val;pid->err = pid->target_val - pid->actual_val;pid->actual_val = pid->Kp * pid->err;return pid->actual_val;
}float PI_realize(PID_struct * pid, float actual_val)
{pid->actual_val = actual_val;pid->err = pid->target_val - pid->actual_val;pid->actual_val = pid->Kp*pid->err + pid->Ki*pid->err_sum;return pid->actual_val;
}float PID_realize(PID_struct * pid, float actual_val)
{pid->actual_val = actual_val;pid->err = pid->target_val - pid->actual_val;pid->err_sum += pid->err;pid->actual_val = pid->Kp*pid->err + pid->Ki*pid->err_sum + pid->Kd*(pid->err-pid->err_last);pid->err_last = pid->err;return pid->actual_val;
}

一共有四个函数分别为PID初始化、P调节、PI调节、PID调节

传入参数为PID结构体,和编码器测的速度

返回值为实际PWM值

使用main.c

#include "main.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "string.h"
#include "stdio.h"
#include "motor.h"
#include "pid.h"
#include "oled.h"
/* USER CODE END Includes */short Enc1_cnt = 0;
short Enc2_cnt = 0;
float motor1_speed = 0.00;
float motor2_speed = 0.00;
int PWM_MAX = 1000, PWM_MIN = -1000;
PID_struct motor1_pid;
PID_struct motor2_pid;
int motor1_pwm, motor2_pwm;
char oledBuf[20];void SystemClock_Config(void);int main(void)
{HAL_Init();SystemClock_Config();/* Initialize all configured peripherals */MX_GPIO_Init();MX_TIM3_Init();MX_USART1_UART_Init();MX_TIM2_Init();MX_TIM4_Init();/* USER CODE BEGIN 2 */HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_2);HAL_TIM_Encoder_Start(&htim2, TIM_CHANNEL_ALL);HAL_TIM_Encoder_Start(&htim4, TIM_CHANNEL_ALL);HAL_TIM_Base_Start_IT(&htim2);HAL_TIM_Base_Start_IT(&htim4);//PID初始化PID_Init(&motor1_pid);PID_Init(&motor2_pid);OLED_Init();OLED_ColorTurn(0);OLED_DisplayTurn(0);OLED_Clear();/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){motor1_pwm = PID_realize(&motor1_pid, motor1_speed);motor2_pwm = PID_realize(&motor2_pid, motor2_speed);Load_PWM(motor1_pwm, motor2_pwm);Enc1_cnt = -(short)__HAL_TIM_GET_COUNTER(&htim2);Enc2_cnt = (short)__HAL_TIM_GET_COUNTER(&htim4);motor1_speed = (float)Enc1_cnt*100/45/11/4;motor2_speed = (float)Enc2_cnt*100/45/11/4;printf("Enc1_cnt: %d\r\n", Enc1_cnt);printf("Enc2_cnt: %d\r\n", Enc2_cnt);printf("motor1_speed: %.3f\r\n", motor1_speed);printf("motor2_speed: %.3f\r\n", motor2_speed);//OLED显示sprintf(oledBuf, "left_speed :%.3f",motor1_speed);OLED_ShowString(0, 40, (u8*)oledBuf, 12);sprintf(oledBuf, "right_speed:%.3f",motor2_speed);OLED_ShowString(0, 52, (u8*)oledBuf, 12);OLED_Refresh();__HAL_TIM_SET_COUNTER(&htim2, 0);__HAL_TIM_SET_COUNTER(&htim4, 0);HAL_Delay(10);}}

匿名上位机显示波形

匿名上位机下载

匿名上位机通信协议可参考这篇文章匿名上位机V7.12协议编程(基于STM32F407+CubeMX+UART外设通信)

使用

新建ano_upper.h

#ifndef STM32_ANO_UPPER_H
#define STM32_ANO_UPPER_H
#include "main.h"
#include "usart.h"//数据拆分宏定义,在发送大于1字节的数据类型时,比如int16、float等,需要把数据拆分成单独字节进行发送#define BYTE0(dwTemp) ( *( (char *)(&dwTemp) ) ) /*!< uint32_t 数据拆分 byte0 */
#define BYTE1(dwTemp) ( *( (char *)(&dwTemp) + 1) ) /*!< uint32_t 数据拆分 byte1 */
#define BYTE2(dwTemp) ( *( (char *)(&dwTemp) + 2) ) /*!< uint32_t 数据拆分 byte2 */
#define BYTE3(dwTemp) ( *( (char *)(&dwTemp) + 3) ) /*!< uint32_t 数据拆分 byte3 */void ANO_DT_Send_F1(uint16_t data1, uint16_t data2, uint16_t data3, uint16_t data4);
void ANO_DT_Send_F2(int16_t data1, int16_t data2, int16_t data3, int16_t data4);
void ANO_DT_Send_F3(int16_t data1, int16_t data2, int32_t data3);
#endif //STM32_ANO_UPPER_H

ano_upper.c

#include "ano_upper.h"
/** 发送数据缓存 */unsigned char data_to_send[50]; //用于绘图/*
* @brief 向上位机发送发送4个uint16_t数据
* @param data1: 发送给上位机显示波形 (可以自己加)
* @return 无
* @note 通过F1帧发送4个uint16类型数据
* @see ANO_DT_Send_F1
*/
void ANO_DT_Send_F1(uint16_t data1, uint16_t data2, uint16_t data3, uint16_t data4)
{unsigned char _cnt=0; //计数值unsigned char i = 0;unsigned char sumcheck = 0; //和校验unsigned char addcheck = 0; //附加和校验data_to_send[_cnt++] = 0xAA; //帧头 0xAAdata_to_send[_cnt++] = 0xFF; //目标地址data_to_send[_cnt++] = 0xF1; //功能码0xF1data_to_send[_cnt++] = 8; //数据长度8个字节//单片机为小端模式-低地址存放低位数据 匿名上位机要求先发低位数据, 所以先发低地址data_to_send[_cnt++]=BYTE0(data1);data_to_send[_cnt++]=BYTE1(data1);data_to_send[_cnt++]=BYTE0(data2);data_to_send[_cnt++]=BYTE1(data2);data_to_send[_cnt++]=BYTE0(data3);data_to_send[_cnt++]=BYTE1(data3);data_to_send[_cnt++]=BYTE0(data4);data_to_send[_cnt++]=BYTE1(data4);for(i=0; i < (data_to_send[3]+4); i++) //数据校验{sumcheck += data_to_send[i]; //从帧头开始,对每一字节进行求和,直到DATA区结束addcheck += sumcheck; //每一字节的求和操作,进行一次sumcheck的累加};data_to_send[_cnt++]=sumcheck;data_to_send[_cnt++]=addcheck;HAL_UART_Transmit(&huart1, data_to_send,_cnt,0xFFFF);
}
/*
* @brief 向上位机发送发送4个int16_t数据
* @param data1: 发送给上位机显示波形 (可以自己加)
* @return 无
* @note 通过F2帧发送4个int16类型数据
* @see ANO_DT_Send_F2
*/
void ANO_DT_Send_F2(int16_t data1, int16_t data2, int16_t data3, int16_t data4)
{unsigned char _cnt=0; //计数值unsigned char i = 0;unsigned char sumcheck = 0; //和校验unsigned char addcheck = 0; //附加和校验data_to_send[_cnt++] = 0xAA; //帧头 0xAAdata_to_send[_cnt++] = 0xFF; //目标地址data_to_send[_cnt++] = 0xF2; //功能码0xF2data_to_send[_cnt++] = 8; //数据长度8个字节//单片机为小端模式-低地址存放低位数据 匿名上位机要求先发低位数据, 所以先发低地址data_to_send[_cnt++]=BYTE0(data1);data_to_send[_cnt++]=BYTE1(data1);data_to_send[_cnt++]=BYTE0(data2);data_to_send[_cnt++]=BYTE1(data2);data_to_send[_cnt++]=BYTE0(data3);data_to_send[_cnt++]=BYTE1(data3);data_to_send[_cnt++]=BYTE0(data4);data_to_send[_cnt++]=BYTE1(data4);for(i=0; i < (data_to_send[3]+4); i++) //数据校验{sumcheck += data_to_send[i]; //从帧头开始,对每一字节进行求和,直到DATA区结束addcheck += sumcheck; //每一字节的求和操作,进行一次sumcheck的累加};data_to_send[_cnt++]=sumcheck;data_to_send[_cnt++]=addcheck;HAL_UART_Transmit(&huart1, data_to_send,_cnt,0xFFFF);
}
/*
* @brief 向上位机发送发送2个int16_t和1个int32_t数据
* @param data1: 发送给上位机显示波形 (可以自己加)
* @return 无
* @note 通过F3帧发送2个int16_t和1个int32_t数据
* @see ANO_DT_Send_F3
*/
void ANO_DT_Send_F3(int16_t data1, int16_t data2, int32_t data3)
{unsigned char _cnt=0; //计数值unsigned char i = 0;unsigned char sumcheck = 0; //和校验unsigned char addcheck = 0; //附加和校验data_to_send[_cnt++] = 0xAA; //帧头 0xAAdata_to_send[_cnt++] = 0xFF; //目标地址data_to_send[_cnt++] = 0xF3; //功能码0xF2data_to_send[_cnt++] = 8; //数据长度8个字节//单片机为小端模式-低地址存放低位数据 匿名上位机要求先发低位数据, 所以先发低地址data_to_send[_cnt++]=BYTE0(data1);data_to_send[_cnt++]=BYTE1(data1);data_to_send[_cnt++]=BYTE0(data2);data_to_send[_cnt++]=BYTE1(data2);data_to_send[_cnt++]=BYTE0(data3);data_to_send[_cnt++]=BYTE1(data3);data_to_send[_cnt++]=BYTE2(data3);for(i=0; i < (data_to_send[3]+4); i++) //数据校验{sumcheck += data_to_send[i]; //从帧头开始,对每一字节进行求和,直到DATA区结束addcheck += sumcheck; //每一字节的求和操作,进行一次sumcheck的累加};data_to_send[_cnt++]=sumcheck;data_to_send[_cnt++]=addcheck;HAL_UART_Transmit(&huart1, data_to_send,_cnt,0xFFFF);
}

main.c

//使用F2帧模式发送4个int16类型数据
ANO_DT_Send_F2(motor1_speed*100, motor2_speed*100, 1.0*100, 1.0*100);

显示
目标值为1.0
pid最终

image-20230824200902554

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/104157.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Facebook HiPlot “让理解高维数据变得容易”

在这个全球信息化的时代&#xff0c;数据量呈爆炸式增长&#xff0c;数据的复杂性也是如此。如何有效地处理高维数据并找到隐藏在其中的相关性和模式是一个严峻的挑战。近年来&#xff0c;可视化和可视化分析已被应用于该任务&#xff0c;并取得了一些积极成果。Facebook的新Hi…

『C语言入门』初识C语言

文章目录 前言C语言简介一、Hello World&#xff01;1.1 编写代码1.2 代码解释1.3 编译和运行1.4 结果 二、数据类型2.1 基本数据类型2.2 复合数据类型2.3 指针类型2.4 枚举类型 三、C语言基础3.1 变量和常量3.2 运算符3.3 控制流语句3.4 注释单行注释多行注释注释的作用 四、 …

element表格多选实现

表格实现多选 实现表格多选很简单&#xff0c;只需要在表格里加上一列即可&#xff0c;加完之后就会在表格里出现一列白色的四方块按钮&#xff0c;可以多选&#xff0c;也可以单选 <el-table-columntype"selection"width"55"align"center"&…

iOS App逆向之:iOS应用砸壳技术

在iOS逆向&#xff0c;有一项关键的技术叫做“iOS砸壳”&#xff08;iOS App Decryption&#xff09;。自iOS 5版本以来&#xff0c;苹果引入了应用程序加密机制&#xff0c;使得大部分应用都需要进行砸壳操作才能进行逆向分析。因此作为开发者、逆向工程师和安全研究人员都需要…

Python Opencv实践 - 图像直方图自适应均衡化

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/cat.jpg", cv.IMREAD_GRAYSCALE) print(img.shape)#整幅图像做普通的直方图均衡化 img_hist_equalized cv.equalizeHist(img)#图像直方图自适应均衡化 #1. 创…

【动手学深度学习】--21.锚框

锚框 学习视频&#xff1a;锚框【动手学深度学习v2】 官方笔记&#xff1a;锚框 1.锚框 目标检测算法通常会在输入图像中采样大量的区域&#xff0c;然后判断这些区域中是否包含我们感兴趣的目标&#xff0c;并调整区域边界从而更准确地预测目标的真实边界框&#xff08;gro…

hive问题总结

往往用了很久的函数却只知道其单一的应用场景&#xff0c;本文将不断完善所遇到的好用的hive内置函数。 1.聚合函数或者求最大最小值函数搭配开窗函数使用可以实现滑动窗口 例&#xff1a; SELECT event,time,session_id,COLLECT_LIST(event) OVER (PARTITION BY session_id …

ChatGPT + Flutter快速开发多端聊天机器人App

下载地址&#xff1a;ChatGPT Flutter快速开发多端聊天机器人App 下载地址&#xff1a;ChatGPT Flutter快速开发多端聊天机器人App

PL 侧驱动和fpga 重加载的方法

可以解决很多的问题 时钟稳定后加载特定fpga ip &#xff08;要不内核崩的一塌糊涂&#xff09;fpga 稳定复位软件决定fpga ip 加载的时序 dluash load /usr/local/scripts/si5512_setup.lua usleep 30 mkdir -p /lib/firmware cp -rf /usr/local/firmare/{*.bit.bin,*.dtbo} …

Flutter实现动画列表AnimateListView

由于业务需要&#xff0c;在打开列表时&#xff0c;列表项需要一个从右边飞入的动画效果&#xff0c;故封装一个专门可以执行动画的列表组件&#xff0c;可以自定义自己的动画&#xff0c;内置有水平滑动&#xff0c;缩放等简单动画。花里胡哨的动画效果由你自己来定制吧。 功…

206.Flink(一):flink概述,flink集群搭建,flink中执行任务,单节点、yarn运行模式,三种部署模式的具体实现

一、Flink概述 1.基本描述 Flink官网地址:Apache Flink — Stateful Computations over Data Streams | Apache Flink Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。 2.有界流和无界流 无界流(流): 有定义流的开始,没有定义结束。会无休止…

【视频】Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析|数据分享...

全文下载链接&#xff1a;http://tecdat.cn/?p23544 在本文中&#xff0c;长短期记忆网络——通常称为“LSTM”——是一种特殊的RNN递归神经网络&#xff0c;能够学习长期依赖关系&#xff08;点击文末“阅读原文”获取完整代码数据&#xff09;。 本文使用降雨量数据&#xf…

Docker file解析

文章目录 简介构建的三步骤Docker执行Dockerfile的大致流程DockerFile常用保留字指令创建第一个Dockerfile镜像的缓存特性 Docker file 解析 简介 Dockerfile是用来构建Docker镜像的文本文件&#xff0c;是由一条条构建镜像所需的指令和参数构成的脚本&#xff0c;记录了镜像构…

ffmpeg,nginx,vlc把rtsp流转hls

ffmpeg:rtsp>hls流; nginx 托管hls流服务; vlc测试hls流服务; 参考了很多相关文档和资料,由于比较乱就不在一一引用介绍了&#xff0c;下面的是实操OK的例子&#xff1b; 1&#xff09;ffmpeg (ffmpeg-4.4.1-full_build)&#xff0c;要用full版本&#xff0c;否则会缺某些…

华为数通方向HCIP-DataCom H12-821题库(单选题:61-80)

第61题 关于 BGP 的Keepalive报文消息的描述,错误的是 A、Keepalive周期性的在两个BGP邻居之间发送 B、Keepalive报文主要用于对等路由器间的运行状态和链路的可用性确认 C、Keepalive 报文只包含一个BGP数据报头 D、缺省情况下,Keepalive 的时间间隔是180s 答案&#xff…

videojs 实现自定义组件(视频画质/清晰度切换) React

前言 最近使用videojs作为视频处理第三方库&#xff0c;用来对接m3u8视频类型。这里总结一下自定义组件遇到的问题及实现&#xff0c;目前看了许多文章也不全&#xff0c;官方文档写的也不是很详细&#xff0c;自己摸索了一段时间陆陆续续完成了&#xff0c;这是实现后的效果.…

MyBatis分页与特殊字符处理

文章目录 一、分页1.1 分页插件PageHelper1.2 使用1.2.1 导入pom依赖1.2.2 Mybatis.cfg.xml配置拦截器1.2.3. 配置 Mapper.xml1.2.4 测试 二、特殊字符处理2.1 使用CDATA区段2.2 使用实体引用 一、分页 1.1 分页插件PageHelper PageHelper 是 Mybatis 的一个插件。官网 Page…

ios小组件报错:Please adopt containerBackground API

iOS 17 小组件报错:Please adopt containerBackground API 使用下面的方法解决了: 代码: extension View {func widgetBackground(_ backgroundView: some View) -> some View {if #available(iOSApplicationExtension 17.0, *) {return containerBackground(for: .wi…

【云原生】Docker私有仓库 RegistryHabor

目录 1.Docker私有仓库&#xff08;Registry&#xff09; 1.1 Registry的介绍 1.2 Registry的部署 步骤一&#xff1a;拉取相关的镜像 步骤二&#xff1a;进行 Registry的相关yml文件配置&#xff08;docker-compose&#xff09; 步骤三&#xff1a;镜像的推送 2. Regist…

k8s 安装 istio(二)

3.3 部署服务网格调用链检测工具 Jaeger 部署 Jaeger 服务 kubectl apply -f https://raw.githubusercontent.com/istio/istio/release-1.16/samples/addons/jaeger.yaml 创建 jaeger-vs.yaml 文件 apiVersion: networking.istio.io/v1alpha3 kind: VirtualService metadata…