线性代数(五) 线性空间

前言

《线性代数(三) 线性方程组&向量空间》我通过解线性方程组的方式去理解线性空间。此章从另一个角度去理解

空间是什么

大家较熟悉的:平面直角坐标系是最常见的二维空间
在这里插入图片描述
空间由无穷多个坐标点组成
在这里插入图片描述
每个坐标点就是一个向量
在这里插入图片描述

  • 反过来,也可说:2维空间,是由无穷多个2维向量构成
  • 同样的,在3维空间中,每个3维坐标点就是一个3维向量
  • 那么同理:3维空间中有无穷多个3维向量,或3维空间由无穷多个3维向量构成

空间中所有向量,都可被表示成 e 1 ⃗ , e 2 ⃗ , . . . , e n ⃗ \vec{e_{1}},\vec{e_{2}},...,\vec{e_{n}} e1 ,e2 ,...,en 的线性组合,若有一向量记为: a ⃗ \vec{a} a
a ⃗ = k 1 ⋅ e 1 ⃗ + k 2 ⋅ e 2 ⃗ + . . . + k n ⋅ e n ⃗ , k 1 , k 2 , . . . , k n 有解即可 \vec{a}=k_{1}·\vec{e_{1}}+k_{2}·\vec{e_{2}}+...+k_{n}·\vec{e_{n}} , k_{1},k_{2},...,k_{n}有解即可 a =k1e1 +k2e2 +...+knen k1,k2,...,kn有解即可
则称:这些向量 e 1 ⃗ , e 2 ⃗ , . . . , e n ⃗ \vec{e_{1}},\vec{e_{2}},...,\vec{e_{n}} e1 ,e2 ,...,en 为这个空间基

线性空间定义及性质

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

向量相加

在这里插入图片描述
[ x 1 y 1 ] + [ x 2 y 2 ] = [ x 1 + x 2 y 1 + y 2 ] = [ 2 + 3 4 + 1 ] \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ y_1+ y_2 \end{bmatrix} = \begin{bmatrix} 2 + 3 \\ 4+ 1 \end{bmatrix} [x1y1]+[x2y2]=[x1+x2y1+y2]=[2+34+1]

数与向量乘法

在这里插入图片描述
[ x y ] ∗ 2 = [ 2 x 2 y ] \begin{bmatrix} x \\ y \end{bmatrix} * 2 = \begin{bmatrix} 2x \\ 2y \end{bmatrix} [xy]2=[2x2y]

维数,坐标和基

在这里插入图片描述
这里出现了一个线性无关的概念,这里线性无关的概念和向量空间中的线性无关差不多,但向量的范围变广了。

在这里插入图片描述

  1. n维线性空间V的基不是唯一的。V中的任意n个线性无关向量都是V的一组基
  2. 向量 a ⃗ \vec{a} a 的坐标 ( a 1 , a 2 , . . . a n ) (a_1,a_2,...a_n) (a1,a2,...an) ( ε 1 , ε 2 , . . . ε n ) (\varepsilon_1,\varepsilon_2,...\varepsilon_n) (ε1,ε2,...εn)基下,是唯一且确定的
要怎么确定线性空间的维数与基

在这里插入图片描述

欧几里得空间

欧几里得空间是空间中的一种类型,是一种特殊的集合。欧几里得集合中的元素:有序实数元组

例:(2,3)(2,4)(3,4)(3,5)为有序实数2元组

  • 有序是指:如(2,3)和(3,2)是两个不同的元素
  • 也就是:每个元素内的实数是讲顺序的
  • 实数是指:每个元素内的数字都∈R
  • 元组是指:每个元素有有序几个数字构成
  • 如:2个数字构成=2元组,n个数字构成=n元组

欧几里得集合=有序实数元组=n维坐标点的集合
所以,欧几里得空间就是我们从小到大进场使用的那个空间

欧几里得空间符合空间的8大定理

子空间

子空间,是整个空间的一部分。但它也是空间,必须满足向量空间的定义。
在这里插入图片描述

子空间的交集

在这里插入图片描述

子空间的和

子空间的 V 1 , V 2 V_1,V_2 V1,V2的并集,并不是简单的元素相加,造成“子空间的并集不属于子空间”。
在这里插入图片描述
所以定义子空间的和
在这里插入图片描述

子空间的直和

在这里插入图片描述
子空间直和是特殊的和。基要求各子空间互相独立。

可以把整个线性空间看成一个大蛋糕。

  • 直和分解就是把蛋糕切成小块的,每一小块蛋糕都是一个子空间,所有小蛋糕之间没有交集,且它们能拼成整个蛋糕。
  • 子空间的和就是分蛋糕的时候没切好,小蛋糕拼不成整个蛋糕(子空间之间的交集非空).

内积空间

在之前的内容中,我们抽象的介绍了向量,矩阵以及线性空间线性变换等。但是在几何中,向量还有向量的模,向量的内积运算等。为了引入向量的模,向量的内积等运算,我们引入了“内积定义”。即内积空间=线性空间+内积定义。
在这里插入图片描述
在这里插入图片描述

向量的夹角

在这里插入图片描述
cos ⁡ θ = cos ⁡ ( α − β ) = cos ⁡ ( α ) cos ⁡ ( β ) + sin ⁡ ( α ) sin ⁡ ( β ) = x 1 x 1 2 + y 1 2 ∗ x 2 x 2 2 + y 2 2 + y 1 x 1 2 + y 1 2 ∗ y 2 x 2 2 + y 2 2 \cos\theta = \cos(\alpha-\beta) =\cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)=\cfrac{x_1}{\sqrt{\gdef\bar#1{#1^2} \bar{x_1} + \bar{y_1} }} * \cfrac{x_2}{\sqrt{\gdef\bar#1{#1^2} \bar{x_2} + \bar{y_2} }} + \cfrac{y_1}{\sqrt{\gdef\bar#1{#1^2} \bar{x_1} + \bar{y_1} }} * \cfrac{y_2}{\sqrt{\gdef\bar#1{#1^2} \bar{x_2} + \bar{y_2} }} cosθ=cos(αβ)=cos(α)cos(β)+sin(α)sin(β)=x12+y12 x1x22+y22 x2+x12+y12 y1x22+y22 y2
cos ⁡ θ = x 1 x 2 + y 1 y 2 x 1 2 + y 1 2 x 2 2 + y 2 2 = a ⃗ ∗ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ \cos\theta = \cfrac{x_1x_2+y_1y_2}{\sqrt{\gdef\bar#1{#1^2} \bar{x_1} + \bar{y_1}}\sqrt{\gdef\bar#1{#1^2} \bar{x_2} + \bar{y_2}}} = \cfrac{\vec{a} *\vec{b}}{|\vec{a} ||\vec{b}|} cosθ=x12+y12 x22+y22 x1x2+y1y2=a ∣∣b a b

上述的a,b向量,只是在2维坐标系中,如果将坐标系转为n维度,即向量a为(x1,x2,x3…xn)向量b为(y1,y2,y3…yn)
cos ⁡ θ = ∑ i = 1 n ( x i ∗ y i ) ∑ i = 1 n x i 2 ∑ i = 1 n y i 2 = [ a , b ] [ a , a ] [ b , b ] \cos\theta = \cfrac{\sum_{i=1}^n(x_i*y_i)}{\sqrt{\sum_{i=1}^n\gdef\bar#1{#1^2} \bar{x_i}}\sqrt{\sum_{i=1}^n\gdef\bar#1{#1^2} \bar{y_i}}}=\cfrac{[a,b]}{\sqrt{[a,a]}\sqrt{[b,b]}} cosθ=i=1nxi2 i=1nyi2 i=1n(xiyi)=[a,a] [b,b] [a,b]

两个向量的夹角 θ \theta θ=90°,即两个向量正交.

两个向量相互正交,把这2个向量合为一组向量,就叫正交向量组

在这里插入图片描述

正交基

在这里插入图片描述
如果 ∣ e n ∣ = 1 |e_n|=1 en=1,则称为标准正交基

施密特(Schmidt)求解正交基

通过简单的投影方式,可以找到一基的正交基
在这里插入图片描述
已知一组基{KaTeX parse error: Expected 'EOF', got '}' at position 18: …lpha_1,\alpha_2}̲求其正交基组

  1. β 1 = α 1 \beta_1=\alpha_1 β1=α1
  2. β 1 \beta_1 β1的上的单位基为 β 1 [ β 1 , β 1 ] \cfrac{\beta_1}{\sqrt{[\beta_1,\beta_1]}} [β1,β1] β1
  3. 计算 α 1 \alpha_1 α1 β 1 \beta_1 β1上的投影
  4. 计算投影长度, [ α 2 , β 1 ] [ α 2 , α 2 ] [ β 1 , β 1 ] ∗ [ α 2 , α 2 ] \cfrac{[\alpha_2,\beta_1]}{\sqrt{[\alpha_2,\alpha_2]}\sqrt{[\beta_1,\beta_1]}} *\sqrt{[\alpha_2,\alpha_2]} [α2,α2] [β1,β1] [α2,β1][α2,α2]
  5. 投影为长度* β 1 \beta_1 β1的上的单位基 [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 \cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1 [β1,β1][α2,β1]β1
  6. 得正交基为 α 2 − [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 \alpha_2 - \cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1 α2[β1,β1][α2,β1]β1
  7. 正交基组为{ α 2 − [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 , [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 \alpha_2 - \cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1,\cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1 α2[β1,β1][α2,β1]β1,[β1,β1][α2,β1]β1}

如果是三维的话
在这里插入图片描述

正交补

定义: 设 U U U V V V的子空间,则 U ⊥ = { v ∈ V : ∀ u ∈ U < v , u > = 0 } U^\perp =\{v\in V : \forall u\in U \left< v,u\right> =0 \} U={vV:uUv,u=0}称之为 U U U的正交补. ∀ u \forall u u表示集合中所有u的意思

  1. U ⊥ U^\perp U V V V的子空间;
  2. V ⊥ = { 0 } V^\perp=\{0\} V={0} { 0 } ⊥ = V \{0\}^\perp=V {0}=V
  3. U ⊥ ∩ U = { 0 } U^\perp \cap U = \{0\} UU={0};
  4. 如果 U , W U,W U,W都是 V V V的子集,且 U ⊆ W U\sube W UW ,则 W ⊥ ⊆ U ⊥ W^\perp \sube U^\perp WU

定理: 有限维子空间的正交分解: V = U ⊕ U ⊥ V= U \oplus U^\perp V=UU

  1. ( U ⊥ ) ⊥ = U (U^\perp)^\perp=U (U)=U
  2. dim ⁡ V = dim ⁡ U + dim ⁡ U ⊥ \dim V = \dim U + \dim U^\perp dimV=dimU+dimU

如何求解正交补的基?

  1. 假设 d i m V = 3 , d i m U = 2 且基组为 [ { 1 , 0 , 0 } , { 0 , 1 , 0 } ] dim V = 3 , dim U = 2 且基组为[\{1,0,0\},\{0,1,0\}] dimV=3,dimU=2且基组为[{1,0,0},{0,1,0}]
  2. 得矩阵 A = [ 1 0 0 0 1 0 0 0 0 ] A=\begin{bmatrix} 1 &0&0 \\ 0&1&0 \\ 0&0&0 \end{bmatrix} A= 100010000
  3. 假设 U ⊥ U^\perp U的基组 x ⃗ = [ x y z ] \vec{x}=\begin{bmatrix} x\\ y\\ z \end{bmatrix} x = xyz
  4. A x = 0 Ax=0 Ax=0齐次方程组,你通解为{0,0,1}

正交补的基就是方程组的解,解数=dim V - R(A)

主要参考

《欧几里得空间是向量空间》
《生成空间是什么》
《子空间的交与和》
《3.10子空间的运算》
《正交基与标准正交基》
《如何理解施密特(Schmidt)正交化》
《正交补 (orthogonal complements)》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/105774.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kafka--技术文档--架构体系

架构体系 Kafka的架构体系包括以下几个部分&#xff1a; Producer. 消息生产者&#xff0c;就是向Kafka broker发送消息的客户端。Broker. 一台Kafka服务器就是一个Broker。一个集群由多个Broker组成。一个Broker可以容纳多个Topic。Topic. 可以理解为一个队列&#xff0c;一…

Oracle 如何给大表添加带有默认值的字段

一、讲故事 你是否遇到过开发人员添加字段&#xff0c;导致数据库锁表问题&#xff1f; 但是令开发疑惑的事&#xff0c;他们添加字段&#xff0c;有的时候很快&#xff0c;有的时候很慢&#xff1f; 为什么呢&#xff1f; 询问得知&#xff0c;**加的慢时候是带上了default默…

【洛谷】P2440 木材加工

原题链接&#xff1a;https://www.luogu.com.cn/problem/P2440 1. 题目描述 2. 思路分析 整体思路&#xff1a;二分答案 设置一个变量longest来记录最长木头的长度&#xff0c;sum记录切成的小段数量之和。 令左边界l0&#xff0c;右边界llongest。 写一个bool类型的check…

【云原生】Docker的数据管理(数据卷、容器互联)

目录 一、数据卷&#xff08;容器与宿主机之间数据共享&#xff09; 二、数据卷容器&#xff08;容器与容器之间数据共享&#xff09; 三、 容器互联&#xff08;使用centos镜像&#xff09; 总结 用户在使用Docker的过程中&#xff0c;往往需要能查看容器内应用产生的数据…

联合注入步骤

使用场景&#xff1a; 有回显&#xff0c;可以看到某些字段的回显信息 像下面的有具体的回显信息 一、判断注入位点 在原始的id&#xff08;参数&#xff09;的输入后面添加额外的条件 如果and 11 有结果&#xff0c;and10没有结果输出&#xff0c; 就说明我们添加的额外条件…

2023最新AI创作系统ChatGPT网站源码V2.6.0+详细图文搭建安装教程/GPT联网/支持ai绘画+Dall-E2绘画/支持MJ以图生图

一、AI系统 如何搭建部署AI创作ChatGPT系统呢&#xff1f;小编这里写一个详细图文教程吧&#xff01; SparkAi使用Nestjs和Vue3框架技术&#xff0c;持续集成AI能力到AIGC系统&#xff01; 程序核心功能 程序已支持ChatGPT3.5/4.0提问、AI绘画、Midjourney绘画&#xff08;…

solidity0.8.0的应用案例12:通用可升级合约UUPS

代理合约中选择器冲突(Selector Clash)的另一个解决办法:通用可升级代理(UUPS,universal upgradeable proxy standard)。代码由OpenZeppelin的UUPSUpgradeable简化而成,不应用于生产。 UUPS 作为透明代理的替代方案,UUPS也能解决"选择器冲突"(Selector Cl…

论文阅读_模型结构_LoRA

name_en: LoRA: Low-Rank Adaptation of Large Language Models name_ch: LORA&#xff1a;大语言模型的低阶自适应 paper_addr: http://arxiv.org/abs/2106.09685 date_read: 2023-08-17 date_publish: 2021-10-16 tags: [‘深度学习’,‘大模型’] author: Edward J. Hu cita…

2023谷歌开发者大会直播大纲「初稿」

听人劝、吃饱饭,奉劝各位小伙伴,不要订阅该文所属专栏。 作者:不渴望力量的哈士奇(哈哥),十余年工作经验, 跨域学习者,从事过全栈研发、产品经理等工作,现任研发部门 CTO 。荣誉:2022年度博客之星Top4、博客专家认证、全栈领域优质创作者、新星计划导师,“星荐官共赢计…

【C++】开源:Box2D动力学库配置与使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍Box2D动力学库配置与使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#xff0c…

EasyExcel自定义字段对象转换器支持转换实体和集合实体

文章目录 1. 实现ObjectConverter2. 使用3. 测试3.2 导出excel3.1 导入excel 1. 实现ObjectConverter package com.tophant.cloud.common.excel.converters;import cn.hutool.json.JSONUtil; import com.alibaba.excel.converters.Converter; import com.alibaba.excel.enums.…

远程连接虚拟机中ubuntu报错:Network error:Connection refused

ping检测一下虚拟机 可以ping通&#xff0c;说明主机是没问题 #检查ssh是否安装&#xff1a; ps -e |grep ssh发现ssh没有安装 #安装openssh-server sudo apt-get install openssh-server#启动ssh service ssh startps -e |grep ssh检查一下防火墙 #防火墙状态查看 sudo ufw…

汽车电子笔记之:AUTOSA架构下的多核OS操作系统

目录 1、AUTOSAR多核操作系统 1.1、OS Application 1.2、多核OS的软件分区 1.3、任务调度 1.4、核间任务同步 1.5、计数器、报警器、调度表 1.6、自旋锁与共享资源 1.7、核间通信IOC 1.8、OS Object中元素交互 1.9、多核OS的启动与关闭 2、多核OS注意事项 2.1、最小…

Kaggle(3):Predict CO2 Emissions in Rwanda

Kaggle&#xff08;3&#xff09;&#xff1a;Predict CO2 Emissions in Rwanda 1. Introduction 在本次竞赛中&#xff0c;我们的任务是预测非洲 497 个不同地点 2022 年的二氧化碳排放量。 在训练数据中&#xff0c;我们有 2019-2021 年的二氧化碳排放量 本笔记本的内容&am…

云安全攻防(十三)之 使用minikube安装搭建 K8s 集群

使用minikube安装搭建 K8s 集群 Kubernetes 是一个可移植的、可扩展的开源平台&#xff0c;用于管理容器化的工作负载和服务&#xff0c;可促进声明式配置和自动化,一般来说K8s安装有三种方式&#xff0c;分别是Minikube装搭建 K8s 集群&#xff0c;特点是只有一个节点的集群&…

限时 180 天,微软为 RHEL 9 和 Ubuntu 22.04 推出 SQL Server 2022 预览评估版

导读近日消息&#xff0c;微软公司今天发布新闻稿&#xff0c;宣布面向 Red Hat Enterprise Linux&#xff08;RHEL&#xff09;9 和 Ubuntu 22.04 两大发行版&#xff0c;以预览模式推出 SQL Server 2022 评估版。 近日消息&#xff0c;微软公司今天发布新闻稿&#xff0c;宣布…

Android webView混合内容导致视频播放失败

如果你的网页中有混合内容&#xff08;即同时使用了HTTPS和HTTP&#xff09;&#xff0c;可能会导致WebView无法加载视频 解决办法&#xff1a; 1 尝试将所有内容都切换到HTTPS。 2 尝试设置以下配置来提高视频播放的兼容性&#xff1a; webView.getSettings().setMediaPlay…

Spring Boot(Vue3+ElementPlus+Axios+MyBatisPlus+Spring Boot 前后端分离)【二】

&#x1f600;前言 本篇博文是关于Spring Boot(Vue3ElementPlusAxiosMyBatisPlusSpring Boot 前后端分离)【二】的&#xff0c;希望你能够喜欢 &#x1f3e0;个人主页&#xff1a;晨犀主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是晨犀&#xff0c;希望我的文…

homeassistant ubuntu自启动 网络设置

命令行安装virtualbox 或者安装包 hass官网下载 haos_ova-10.4.vdi virtualbox 装hass 最少2G内存 其他省略 自启动&#xff1a; gnome-session-properties 添加 VBoxManage startvm hass --type headless hass为自己的虚拟机名字 网络配置如下&#xff1a; 要全部打开

记录一次presto sql执行报错 Error executing query的解决办法

在执行presto sql 时报错截图如下&#xff1a; 查看后台执行报错日志&#xff1a; java.sql.SQLException: Error executing query at com.facebook.presto.jdbc.PrestoStatement.internalExecute(PrestoStatement.java:307) at com.facebook.presto.jdbc.PrestoStatement.exe…