基于YOLOV8模型的课堂场景下人脸目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOV8模型的课堂场景下人脸目标检测系统可用于日常生活中检测与定位课堂场景下人脸,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

需要源码的朋友在后台私信博主获取下载链接

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种基于YOLOV8模型的课堂场景下人脸目标检测系统,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

(1)打开项目目录,在搜索框内输入cmd打开终端
在这里插入图片描述

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
在这里插入图片描述

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
在这里插入图片描述

数据集介绍

本系统使用的课堂人脸数据集手动标注了人脸这一个类别,数据集总计9072张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的课堂人脸检测识别数据集包含训练集7203张图片,验证集1869张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在这里插入图片描述

在训练时也可指定更多的参数,大部分重要的参数如下所示:
在这里插入图片描述

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
在这里插入图片描述

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/108109.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c#设计模式-创建型模式 之 原型模式

概述 原型模式是一种创建型设计模式,它允许你复制已有对象,而无需使代码依赖它们所属的类。新的对象可以通过原型模式对已有对象进行复制来获得,而不是每次都重新创建。 原型模式包含如下角色: 抽象原型类:规定了具…

基于微信小程序的垃圾分类系统设计与实现(2.0 版本,附前后端代码)

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 1 简介 视频演示地址: 基于微信小程序的智能垃圾分类回收系统,可作为毕业设计 小…

ctfshow-web-红包题第六弹

0x00 前言 CTF 加解密合集CTF Web合集 0x01 题目 0x02 Write Up 首先跑一下字典,这里用的dirmap,可以看到有一个web.zip 下载下来之后发现是一个网站备份,备份的是check.php.bak 然后接着看,可以看到这里不太可能是sql注入,有…

构建 NodeJS 影院预订微服务并使用 docker 部署(04/4)

一、说明 构建一个微服务的电影网站,需要Docker、NodeJS、MongoDB,这样的案例您见过吗?如果对此有兴趣,您就继续往下看吧。 我们前几章的快速回顾 第一篇文章介绍了微服务架构模式,并讨论了使用微服务的优缺点。第二篇…

基于闪电连接过程算法优化的BP神经网络(预测应用) - 附代码

基于闪电连接过程算法优化的BP神经网络(预测应用) - 附代码 文章目录 基于闪电连接过程算法优化的BP神经网络(预测应用) - 附代码1.数据介绍2.闪电连接过程优化BP神经网络2.1 BP神经网络参数设置2.2 闪电连接过程算法应用 4.测试结…

简单js逆向案例(2)

文章目录 前文分析完整代码结尾 前文 本文章中所有内容仅供学习交流,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关,若有侵权,请联系我立即删除! 分析 目标网址 aHR0cHM6Ly9zZWFyY2guYmlkY2VudGV…

如何使用Wireshark进行网络流量分析?

如何使用Wireshark进行网络流量分析。Wireshark是一款强大的网络协议分析工具,可以帮助我们深入了解网络通信和数据流动。 1. 什么是Wireshark? Wireshark是一个开源的网络协议分析工具,它可以捕获并分析网络数据包,帮助用户深入…

【自动驾驶】TI SK-TDA4VM 开发板上电调试,AI Demo运行

1. 设备清单 TDA4VM Edge AI 入门套件【略】USB 摄像头(任何符合 V4L2 标准的 1MP/2MP 摄像头,例如:罗技 C270/C920/C922)全高清 eDP/HDMI 显示屏最低 16GB 高性能 SD 卡连接到互联网的 100Base-T 以太网电缆【略】UART电缆外部电源或电源附件要求: 标称输出电压:5-20VDC…

以getPositionList为例,查找接口函数定义及接口数据格式定义

job-app-master/pages/index/index.vue中299行 async getPositionList(type refresh, pulldown false) {this.status 请求中;if (type refresh) {this.query.page 1;} else {this.query.page;}let res await this.$apis.getPositionList(this.query);if (res) {if (type …

【Jellyfin影音服务器】 本地部署公网远程影音库

文章目录 1. 前言2. Jellyfin服务网站搭建2.1. Jellyfin下载和安装2.2. Jellyfin网页测试 3.本地网页发布3.1 cpolar的安装和注册3.2 Cpolar云端设置3.3 Cpolar本地设置 4.公网访问测试5. 结语 1. 前言 随着移动智能设备的普及,各种各样的使用需求也被开发出来&…

Hadoop入门机安装hadoop

0目录 1.Hadoop入门 2.linux安装hadoop 1.Hadoop入门 定义 Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。 优势 高可靠性:Hadoop底层维护多…

Spring框架中的Singleton和Prototype Bean作用域

Spring框架是依赖注入的事实上的框架,在开发可扩展、弹性和安全的云原生环境中具有良好的记录。 在使用Spring Beans时,初学者经常会对Spring beans和它们的作用域感到有些困惑。 以下是我对Singleton和Prototype Bean作用域的简单示例进行阐述的尝试。 …

docker for window更改到非系统盘的使用记录

1、使用Hyper-v模式的docker安装 2、安装docker for windows后安装目录没办法自己选择,固定在c盘 卸载后通过命令行方式设置软连接方式后重新安装来让其安装到软连接的d盘,解决c盘空间问题 mklink /j "C:\Program Files\Docker" "D:\Pr…

Java数据结构学习和源码阅读(线性数据结构)

线性数据结构 链表 LinkList 链表的数据结构 一组由节点组成的数据结构,每个元素指向下一个元素,是线性序列。 最简单的链表结构: 数据指针(存放执行下一个节点的指针) 不适合的场景: 需要循环遍历将…

c语言实现堆

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、树1、树的概念2、树的相关概念3、树的表示 二、二叉树1、二叉树概念2、特殊的二叉树3、二叉树的性质4、二叉树的顺序结构5、二叉树的链式结构 三、堆(二叉树…

数据结构--树4.2(二叉树)

目录 一、二叉树的定义和特点 1、定义 2、特点 二、二叉树的基本形态 1、空二叉树 2、只有一个根结点 3、根结点只有左子树 4、根结点只有右子树 5、根结点既有左子树又有右子树 6、斜树 7、满二叉树 8、满二叉树和完全二叉树 三、二叉树的性质 一、二叉树的定义和…

CFC编程入门_【10分钟学会】

什么是CFC: 【差不多10分钟全学会】 CFC是图形化编程, 跟单片机的连线一样, 唯一的区别:功能块右侧是【只能输出】引脚。 只有左侧引脚可以输入输出。 有哪些控件: 指针:用于拖动功能块。 控制点&#xf…

python-docx把dataframe表格添加到word文件中

python-docx把dataframe表格添加到word文件中思路较为简单: 先把dataframe格式转变为table新建一个段落:document.add_paragraph()把table添加到这个段落下方 效果图 示例代码 from docx import Document, oxml import pandas as pd import numpy as …

SpringMVC入门笔记

一、SpringMVC简介 1. 什么是MVC MVC是一种软件架构的思想,将软件按照模型、视图、控制器来划分 M:Model,模型层,指工程中的JavaBean,作用是处理数据 JavaBean分为两类: 一类称为实体类Bean&#xff1…

性能测试面试问题,一周拿3个offer不嫌多

性能测试的三个核心原理是什么? 1.基于协议。性能测试的对象是网络分布式架构的软件,而网络分布式架构的核心是网络协议 2.多线程。人的大脑是单线程的,电脑的cpu是多线程的。性能测试就是利用多线程的技术模拟多用户去负载 3.模拟真实场景。…