【JVM基础】JVM入门基础

目录

    • JVM的位置
    • 三种 JVM
    • JVM体系结构
    • 类加载器
      • 双亲委派机制
        • 概念
        • 例子
        • 作用
      • 沙箱安全机制
        • 组成沙箱的基本组件
    • Native
      • JNI:Java Native Interface(本地方法接口)
      • Native Method Stack(本地方法栈)
    • PC寄存器(Program Counter Register)
    • 方法区(Method Area)
    • 栈(Java Stack)
      • 栈 + 堆 + 方法区:交互关系
    • 堆(Heap)
      • 新生区 (伊甸园+幸存者区*2)
      • 老年区
      • 永久区
      • 堆内存调优
        • 报OOM怎么办?
    • GC(垃圾回收)
      • 引用计数法
      • 复制算法
      • 标记清除
      • 标记压缩(标记整理):再优化
      • 标记清除压缩:再优化
      • 分代收集算法
      • 总结

JVM的位置

应用程序(Java应用程序)在JRE上运行(JRE包含JVM),JRE在操作系统(Windows、Mac)上运行,操作系统在硬件体系(Intel、Spac…)上运行。

三种 JVM

  • Sun公司:HotSpot 用的最多(我们使用)
  • BEA:JRockit
  • IBM:J9VM

JVM体系结构

JVM 调优:99%都是在方法区和堆,大部分时间调堆。 JNI(Java Native Interface):本地方法接口
在这里插入图片描述
在这里插入图片描述

类加载器

作用:加载class文件
例如:new Student();(具体实例在堆里,引用变量名放栈里)

  • 虚拟机自带的加载器
  • 启动类(根)加载器
  • 扩展类加载器
  • 应用程序加载器

在这里插入图片描述
在这里插入图片描述

双亲委派机制

概念

当某个类加载器需要加载某个.class文件时,它首先把这个任务委托给他的上级类加载器,递归这个操作,如果上级的类加载器没有加载,自己才会去加载这个类。

例子

当一个 Hello.class 这样的文件要被加载时。
不考虑我们自定义类加载器,首先会在 AppClassLoader 中检查是否加载过,如果有那就无需再加载了。如果没有,那么会拿到父加载器,然后调用父加载器的 loadClass 方法。
父类中同理也会先检查自己是否已经加载过,如果没有再往上。注意这个类似递归的过程,直到到达 Bootstrap classLoader 之前,都是在检查是否加载过,并不会选择自己去加载。
直到 BootstrapClassLoader,已经没有父加载器了,这时候开始考虑自己是否能加载了,如果自己无法加载,会下沉到子加载器去加载,一直到最底层,如果没有任何加载器能加载,就会抛出ClassNotFoundException

在这里插入图片描述

作用

  • 1、防止重复加载同一个.class。通过委托去向上面问一问,加载过了,就不用再加载一遍。保证数据安全。
  • 2、保证核心.class不能被篡改。通过委托方式,不会去篡改核心.class,即使篡改也不会去加载,即使加载也不会是同一个.class对象了。不同的加载器加载同一个.class也不是同一个Class对象。这样保证了Class执行安全。

比如:如果有人想替换系统级别的类:String.java。
篡改它的实现,在这种机制下这些系统的类已经被 Bootstrap classLoader 加载过了(为什么?因为当一个类需要加载的时候,最先去尝试加载的就是 BootstrapClassLoader ),所以其他类加载器并没有机会再去加载,从一定程度上防止了危险代码的植入。

沙箱安全机制

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

组成沙箱的基本组件

  • 字节码校验器(bytecode verifier)
    确保 Java 类文件 .Class 遵循 Java 语言规范。这样可以帮助 Java 程序实现内存保护。但并不是所有的类文件都会经过字节码校验,比如核心类。
  • 类装载器(class loader)
    其中类装载器在3个方面对 Java 沙箱起作用:
    • 它防止恶意代码去干涉善意的代码; //双亲委派模式
    • 它守护了被信任的类库边界;
    • 它将代码归入保护域,确定了代码可以进行哪些操作。

虚拟机为不同的类加载器载入的类提供不同的命名空间,命名空间由一系列唯一的名称组成,每一个被装载的类将有一个名字,这个命名空间是由 Java 虚拟机为每一个类装载器维护的,它们互相之间甚至不可见。

类装载器采用的机制是双亲委派模式

1、从最内层 JVM 自带类加载器开始加载,外层恶意同名类得不到加载从而无法使用;

2、由于严格通过包来区分了访问域,外层恶意的类通过内置代码也无法获得权限访问到内层类,破坏代码就自然无法生效。

  • 存取控制器(access controller):存取控制器可以控制核心 API 对操作系统的存取权限,而这个控制的策略设定,可以由用户指定。
  • 安全管理器(security manager):是核心 API 和操作系统之间的主要接口。实现权限控制,比存取控制器优先级高。
  • 安全软件包(security package):java.security 下的类和扩展包下的类,允许用户为自己的应用增加新的安全特性,包括:
    • 安全提供者
    • 消息摘要
    • 数字签名 keytools https(需要证书)
    • 加密
    • 鉴别

Native

凡是带了 native 关键字的,说明 Java 的作用范围达不到了,得回去调用底层C语言的库
凡是带了 native 关键字的方法会进入本地方法栈,其它的是 Java栈

JNI:Java Native Interface(本地方法接口)

调用本地方法接口(JNI)作用:

扩展 Java 的使用,融合不同的编程语言为 Java 所用
Java 诞生的初衷是融合C/C++程序,C、C++横行,想要立足,必须要有调用C、C++的程序,它在内存区城中专门开辟了块标记区城: Native Method Stack

Native Method Stack(本地方法栈)

登记 native 方法,在执行引擎(Execution Engine)执行的时候。通过JNI (本地方法接口)加载**本地方法库(Native Libraies)**中的方法。

在企业级应用中少见,与硬件有关应用:Java程序驱动打印机,系统管理生产设备等

PC寄存器(Program Counter Register)

程序计数器: Program Counter Register

每个线程都有一个程序计数器,是线程私有的,就是一个指针, 指向方法区中的方法字节码 ( 用来存储指向下一条指令的地址, 也即将要执行的指令代码 ), 在执行引擎读取下一条指令,是一个非常小的内存空间,几乎可以忽略不计。

方法区(Method Area)

方法区是被所有线程共享,所有字段和方法字节码,以及一些特殊方法,如构造函数,接口代码也在此定义,简单说:所有定义的方法的信息都保存在该区域,此区域属于共享区间;

静态变量、常量、类信息(构造方法、接口定义)、运行时的常量池(如:static,final,,Class(类模板), 常量池)存在方法区中,但是实例变量存在堆内存中,和方法区无关。

栈(Java Stack)

为什么 main() 先执行,最后结束:(因为一开始 main() 先压入栈)

栈:栈内存,主管程序的运行,生命周期和线程同步。
线程结束,栈内存也就释放,对于栈来说,不存在垃圾回收问题。

栈存放:8大基本类型+对象引用+实例的方法。
栈运行原理:栈帧(局部变量表+操作数栈)每调用一个方法都有一个栈帧。
栈满了 main() 无法结束,会抛出错误:栈溢出 StackOverflowError

在这里插入图片描述

栈 + 堆 + 方法区:交互关系

在这里插入图片描述

堆(Heap)

一个 JVM 只有一个堆内存,堆的大小是可以调节的。
类加载器读取了类文件后,一般会把 类,方法,常量,变量保存所有引用类型的真实对象放到堆中。

堆内存细分3个区域:

  • 新生区(伊甸园区) Young / new
  • 养老区 old
  • 永久区 Perm ,在JDK8以后,永久存储区改了个名字 (元空间)

GC 垃圾回收,主要是在 伊甸园区 和 养老区。
在这里插入图片描述
假设内存满了,报错 OOM:堆内存不够 OutOfMemoryError:Java heap space

//-Xms8m -Xmx8m -XX:+PrintGCDetails
public static void main(String[] args) {String str = "javajavajavajava";while (true){str += str + new Random().nextInt(888888888)+ new Random().nextInt(21_0000_0000);}
}
//OutOfMemoryError:Java heap space 堆内存满了

在这里插入图片描述

新生区 (伊甸园+幸存者区*2)

  • 类诞生和成长甚至死亡的地方
  • 伊甸园,所有对象都是在伊甸园区 new 出来的
  • 幸存者区(from, to),轻GC定期清理伊甸园,活下来的放入幸存者区,幸存者区满了之后重GC 清理伊甸园+幸存者区,活下来的放入养老区。都满了就报 OOM。

注:经过研究,99%的对象都是临时对象!直接被清理了

老年区

新生区剩下来的,轻GC杀不死了

永久区

这个区域常驻内存,用来存放 JDK 自身携带的 Class 对象,Interface 元数据,存储的是 Java 运行时的一些环境或类信息,该区域不存在垃圾回收GC。关闭虚拟机就会释放这个内存。

  • jdk1.6之前:永久代,常量池在方法区
  • jdk1.7:永久代,但是慢慢退化了(去永久代)常量池在堆中。
  • jdk1.8之后:无永久代,常量池在元空间

常量池一直在方法区,其中的字符串池 JDK1.7之后保存到了堆中。

永久区 OOM 例子:一个启动类,加载了大量的第三方jar包。Tomcat 部署了太多的应用,大量动态生成的反射类。不断的被加载。直到内存满,就会出现 OOM。

方法区又称非堆 (non-heap),本质还是堆,只是为了区分概念。

元空间逻辑上存在,物理上并不存在。

堆内存调优

public static void main(String[] args) {//返回虚拟机试图使用的最大内存long max = Runtime.getRuntime().maxMemory(); //字节 1024*1024//返回jvm初始化的总内存long total = Runtime.getRuntime().totalMemory();System.out.println("max="+max+"字节\t"+(max/(double)1024/1024+"MB"));System.out.println("total="+total+"字节\t"+(total/(double)1024/1024+"MB"));/* 运行后:max=1866465280字节   1780.0MBtotal=126877696字节  121.0MB*///默认情况下,分配的总内存占电脑内存1/4 初始化1/64
}

报OOM怎么办?

  • 1.尝试扩大堆内存,如果还报错,说明有死循环代码 或垃圾代码
    Edit Configration>add VM option> 输入:-Xms1024m -Xmx1024m -XX:+PrintGCDetails
    在这里插入图片描述
    新生区+养老区:305664K+699392K=1005056K = 981.5M ,说明元空间物理并不存在。

  • 2.分析内存,看一下哪个地方有问题(专业工具)
    能够看到代码第几行出错:内存快照分析工具,MAT,Jprofiler
    MAT,Jprofiler作用:

    • 分析Dump内存文件,快速定位内存泄漏;
    • 获得堆中的数据
    • 获得大的对象
//-Xms 设置初始化内存分配大小 默认1/64
//-Xmx 设置最大分配内存,默认1/4
//-XX:+PrintGCDetails 打印GC垃圾回收信息
//-XX:+HeapDumpOnOutOfMemoryError //oom DUMP
//-Xms1m -Xmx8m -XX:+HeapDumpOnOutOfMemoryError
public class Demo03 {byte[] array = new byte[1*1024*1024]; //1mpublic static void main(String[] args) {ArrayList<Demo03> list = new ArrayList<>();int count = 0;try {while (true){list.add(new Demo03()); //不停地把创建对象放进列表count = count + 1;}} catch (Exception e) {System.out.println("count: "+count);e.printStackTrace();}}
}

在这里插入图片描述
在这里插入图片描述

GC(垃圾回收)

在这里插入图片描述
JVM在进行GC时,并不是对新生代、幸存区、老年区,这三个区域统一回收。大部分时候回收的是新生代

GC两种:轻GC,重GC (Full GC,全局GC)

引用计数法

一般 JVM 不用,大型项目对象太多了
在这里插入图片描述

复制算法

-XX:MaxTenuringThreshold=15 设置进入老年代的存活次数条件。
在这里插入图片描述
在这里插入图片描述
好处:没有内存的碎片,内存效率高
坏处:浪费了内存空间(一个幸存区永远是空的);假设对象100%存活,复制成本很高。
复制算法最佳使用场景:对象存活度较低的时候,新生区。

标记清除

在这里插入图片描述
优点:不需要额外空间,优化了复制算法。
缺点:两次扫描,严重浪费时间,会产生内存碎片。

标记压缩(标记整理):再优化

三部曲:标记–清除–压缩
在这里插入图片描述

标记清除压缩:再优化

每标记清除几次就压缩一次,或者内存碎片积累到一定程度就压缩。

分代收集算法

根据内存对象的存活周期不同,将内存划分成几块,JVM一般将内存分成新生代和老生代。
在新生代中,有大量对象死去和少量对象存活,所以采用复制算法,只需要付出少量存活对象的复制成本就可以完成收集;
老年代中因为对象的存活率极高,没有额外的空间对他进行分配担保,所以采用标记清理或者标记整理算法进行回收;
在这里插入图片描述

总结

内存效率:复制算法 > 标记清除算法 > 标记压缩算法(时间复杂度)

内存整齐度:复制算法 = 标记压缩算法 > 标记清除算法

内存利用率:标记压缩算法 = 标记清除算法 > 复制算法

没有最好的算法,只有合适的算法(GC也被称为分代收集算法)。

  • 年轻代:存活率低,用复制算法。
  • 老年代:存活率高,区域大,用标记-清除-压缩。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/109536.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

paddleclas ImportError: cannot import name ‘Identity‘ from ‘paddle.nn‘

使用paddlepaddle的 paddleclas 官方demos时 &#xff0c;报错如图 ImportError: cannot import name ‘Identity’ from ‘paddle.nn’ 解决方案很简单&#xff1a; 找到调用 Identity 的位置&#xff1a; 注释掉就解决啦 !!! 搞定&#xff01;&#xff01;&#xff01;…

树与图c++

1.树 前言 本文主要介绍的数据结构之树型结构的相关知识&#xff0c;树型数据结构是面试官面试的时候非常喜欢考的一种数据结构&#xff0c;树形结构的遍历也是大厂笔试非常喜欢设置的考点&#xff0c;这些内容都会在本篇文章中进行详细的介绍&#xff0c;并且还会介绍一些常…

QNAP(威联通)NAS外远程访问指南,免费内网穿透工具的应用和配置指导——“cpolar内网穿透”

文章目录 前言1. 威联通安装cpolar内网穿透2. 内网穿透2.1 创建隧道2.2 测试公网远程访问 3. 配置固定二级子域名3.1 保留二级子域名3.2 配置二级子域名 4. 使用固定二级子域名远程访问 前言 购入威联通NAS后&#xff0c;很多用户对于如何在外在公网环境下的远程访问威联通NAS…

Rufus制作u盘 启动工具

下载U盘系统盘制作工具Rufus 官网&#xff1a;http://rufus.ie/zh/ 下载地址&#xff1a;https://github.com/pbatard/rufus/releases/download/v3.18/rufus-3.18.exe 制作u盘 双击运行 选择识别打的u盘 点击选择按钮&#xff0c;选择镜像 点击开始 等待安装完成

一文了解Gin对Cookie的支持z

1. 引言 本文将从Web应用程序处理请求时需要用户信息&#xff0c;同时HTTP又是无状态协议这个矛盾点出发。从该问题出发&#xff0c;简单描述了解决该问题的Token 机制&#xff0c;进而引出Cookie的实现方案。 基于此我们将详细描述Cookie的规范&#xff0c;然后详细描述具体…

electron+vue3全家桶+vite项目搭建【16.1】electron多窗口,pinia状态同步,扩展store方法,主动同步pinia的状态【推荐】

文章目录 引入实现效果如下实现步骤1.自定义pinia插件2.主进程补充同步处理 引入 demo项目地址 我们之前写了一个自动同步pinia状态的插件&#xff0c;可以参考如下文章 electronvue3全家桶vite项目搭建【16】electron多窗口&#xff0c;pinia状态无法同步更新问题解决 这里…

vue 简单实验 v-for 循环

1.代码 <script src"https://unpkg.com/vuenext" rel"external nofollow" ></script> <div id"list-rendering"><ol><li v-for"todo in todos">{{ todo.text }}</li></ol> </div> &…

docker使用安装教程

docker使用安装教程 一、docker安装及下载二、使用教程2.1 镜像2.2 容器2.3 docker安装Redis 一、docker安装及下载 一、安装 安装执行命令&#xff1a;curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 二、启停常用命令 启动docker,执行命令&#xf…

设计模式之命令模式(Command)的C++实现

1、命令模式的提出 在软件开发过程中&#xff0c;“行为请求者”和“行为实现者”通常呈现一种“紧耦合”&#xff0c;如果行为的实现经常变化&#xff0c;则不利于代码的维护。命令模式可以将行为的请求者和行为的实现者进行解耦。具体流程是将行为请求者封装成一个对象&…

ArcGIS Pro怎么解决道路压盖问题

在默认情况下&#xff0c;道路可能会存在低等级道路将高等级道路压盖、在道路连接处不连通的情况&#xff0c;这些问题都可以在ArcGIS Pro内解决&#xff0c;这里为大家介绍一下处理方法&#xff0c;希望能对你有所帮助。 道路分级 在符号系统内&#xff0c;选择唯一值&#x…

设计模式——组合模式

什么是组合模式 组合模式(Composite Pattern)&#xff1a;组合多个对象形成树形结构以表示具有“整体—部分”关系的层次结构。组合模式对单个对象&#xff08;即叶子对象&#xff09;和组合对象&#xff08;即容器对象&#xff09;的使用具有一致性&#xff0c;组合模式又可以…

MySQL详细安装与配置

免安装版的Mysql MySQL关是一种关系数据库管理系统&#xff0c;所使用的 SQL 语言是用于访问数据库的最常用的 标准化语言&#xff0c;其特点为体积小、速度快、总体拥有成本低&#xff0c;尤其是开放源码这一特点&#xff0c;在 Web 应用方面 MySQL 是最好的 RDBMS(Relation…

Java8 Stream流常用方法

1、Stream流思想 Stream流的三类方法 获取Stream流 创建一条流水线,并把数据放到流水线上准备进行操作 中间方法 流水线上的操作 一次操作完毕之后,还可以继续进行其他操作 终结方法 一个Stream流只能有一个终结方法 是流水线上的最后一个操作 生成Stream流的方式 Collect…

【Java 中级】一文精通 Spring MVC - 转换器(五)

&#x1f449;博主介绍&#xff1a; 博主从事应用安全和大数据领域&#xff0c;有8年研发经验&#xff0c;5年面试官经验&#xff0c;Java技术专家&#xff0c;WEB架构师&#xff0c;阿里云专家博主&#xff0c;华为云云享专家&#xff0c;51CTO 专家博主 ⛪️ 个人社区&#x…

CSDN每日一练 |『异或和』『生命进化书』『熊孩子拜访』2023-08-27

CSDN每日一练 |『异或和』『生命进化书』『熊孩子拜访』2023-08-27 一、题目名称&#xff1a;异或和二、题目名称&#xff1a;生命进化书三、题目名称&#xff1a;熊孩子拜访 一、题目名称&#xff1a;异或和 时间限制&#xff1a;1000ms内存限制&#xff1a;256M 题目描述&…

Docker部署gogs仓库

Docker部署gogs Git仓库 拉取镜像 docker pull gogs/gogs查看本地镜像 docker images启动gogs仓库服务 创建数据挂在目录 我在/root目录下创建gogs挂在目录 mkdir gogs启动gogs docker run --namegogs -d -p 10022:22 -p 10880:3000 -v /root/gogs:/data gogs/gogs10022…

搞懂Mybatis逆向⼯程这一篇就够了

Mybatis逆向⼯程配置与⽣成 使用基础版本前置准备项目结构导入依赖配置generatorConfig.xml数据库表 使用逆向工程点击插件使用双击之后效果UserMapper.xml的内容UserMapper接口的内容 测试逆向工程 使用增强版项目结构UserExample和UserWithBLOBsUserMapper接口 测试方法测试结…

深度学习12:胶囊神经网络

目录 研究动机 CNN的缺陷 逆图形法 胶囊网络优点 胶囊网络缺点 研究内容 胶囊是什么 囊间动态路由算法 整体框架 编码器 损失函数 解码器 传统CNN存在着缺陷&#xff08;下面会详细说明&#xff09;&#xff0c;如何解决CNN的不足&#xff0c;Hinton提出了一种对于图…

MySQL学习笔记(八)—— 锁

首先要说明&#xff0c;有的锁是我们自己想加的时候加的&#xff0c;比如全局锁要靠我们自己用命令去加。而有的锁是mysql默认就给你加上了&#xff0c;因为mysql要保证自己最起码的安全性。 InnoDB默认加的是行级锁。 一、全局锁 1.1 用途 全局锁就是把所有的表都给锁了&am…

【Maven教程】(三)基础使用篇:入门使用指南——POM编写、业务代码、测试代码、打包与运行、使用Archetype生成项目骨架~

Maven基础使用篇 1️⃣ 编写 POM2️⃣ 编写业务代码3️⃣ 编写测试代码4️⃣ 打包和运行5️⃣ 使用 Archetype生成项目骨架 1️⃣ 编写 POM 到目前为止&#xff0c;已经大概了解并安装好了Maven环境, 现在&#xff0c;我们开始创建一个最简单的 Hello World 项目。如果你是初次…