生成对抗网络(GAN):在图像生成和修复中的应用

文章目录

      • 什么是生成对抗网络(GAN)?
      • GAN在图像生成中的应用
        • 图像生成
        • 风格迁移
      • GAN在图像修复中的应用
        • 图像修复
      • 拓展应用领域
      • 总结

在这里插入图片描述

🎉欢迎来到AIGC人工智能专栏~生成对抗网络(GAN):在图像生成和修复中的应用


  • ☆* o(≧▽≦)o *☆嗨~我是IT·陈寒🍹
  • ✨博客主页:IT·陈寒的博客
  • 🎈该系列文章专栏:AIGC人工智能
  • 📜其他专栏:Java学习路线 Java面试技巧 Java实战项目 AIGC人工智能 数据结构学习
  • 🍹文章作者技术和水平有限,如果文中出现错误,希望大家能指正🙏
  • 📜 欢迎大家关注! ❤️

生成对抗网络(Generative Adversarial Network,简称GAN)是近年来人工智能领域中备受瞩目的创新之一。它以其独特的结构和训练方式在图像生成和修复领域展现出惊人的潜力。本文将深入探讨生成对抗网络在图像生成和修复方面的应用,通过代码示例帮助读者更好地理解其工作原理。

在这里插入图片描述

什么是生成对抗网络(GAN)?

生成对抗网络是由两个互相竞争的神经网络组成:生成器(Generator)和判别器(Discriminator)。生成器旨在生成逼真的图像,而判别器则试图将生成的图像与真实图像区分开。两者通过对抗性的训练相互提升,最终生成器生成的图像越来越接近真实图像。
在这里插入图片描述

GAN在图像生成中的应用

图像生成

GAN最著名的应用之一就是图像生成。生成器通过随机向量作为输入,逐渐生成逼真的图像。这种方法在艺术创作、虚拟场景生成等领域有广泛应用。

在这里插入图片描述

import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten, Reshape
from tensorflow.keras.models import Sequentialgenerator = Sequential([Dense(128, input_shape=(100,), activation='relu'),Dense(784, activation='sigmoid'),Reshape((28, 28))
])

风格迁移

GAN还可以用于图像风格的迁移。通过将一个图像的风格应用于另一个图像,生成器可以将源图像转化为具有特定风格的图像。

import tensorflow as tf
from tensorflow.keras.applications import VGG19
from tensorflow.keras.layers import Inputcontent_image = tf.keras.preprocessing.image.load_img('content.jpg')
style_image = tf.keras.preprocessing.image.load_img('style.jpg')content_image = tf.keras.preprocessing.image.img_to_array(content_image)
style_image = tf.keras.preprocessing.image.img_to_array(style_image)content_layers = ['block5_conv2']
style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1']def vgg_layers(layer_names):vgg = VGG19(include_top=False, weights='imagenet')vgg.trainable = Falseoutputs = [vgg.get_layer(name).output for name in layer_names]model = tf.keras.Model([vgg.input], outputs)return modeldef gram_matrix(tensor):result = tf.linalg.einsum('bijc,bijd->bcd', tensor, tensor)input_shape = tf.shape(tensor)num_locations = tf.cast(input_shape[1]*input_shape[2], tf.float32)return result / num_locationsnum_content_layers = len(content_layers)
num_style_layers = len(style_layers)style_extractor = vgg_layers(style_layers)
style_outputs = style_extractor(style_image*255)style_features = [gram_matrix(style_output) for style_output in style_outputs]content_image = tf.keras.applications.vgg19.preprocess_input(content_image)style_targets = style_features

GAN在图像修复中的应用

图像修复

GAN还可以用于图像修复,将损坏或缺失的图像部分补充完整。这在恢复老照片、修复损坏的图像等方面具有广泛的应用。

import tensorflow as tf
from tensorflow.keras.layers import Conv2D, Inputdef build_generator():inputs = Input(shape=(None, None, 3))conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv1)conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv2)outputs = Conv2D(3, (3, 3), activation='sigmoid', padding='same')(conv3)return tf.keras.Model(inputs, outputs)

拓展应用领域

除了图像生成和修复,生成对抗网络还在诸多领域展现出惊人的潜力。在自然语言处理中,GAN可以用于生成文本、对话生成等。在医疗领域,GAN可以用于生成医学图像,辅助医生进行诊断。在艺术创作领域,GAN可以创作出独特的艺术作品。

总结

生成对抗网络在图像生成和修复领域展现出巨大的创新潜力。通过生成器和判别器的对抗性训练,GAN可以生成逼真的图像和修复损坏的图像部分。此外,生成对抗网络在其他领域也有着广泛的应用,未来随着技术的不断发展,我们可以期待更多创新的应用领域和更强大的GAN模型的涌现。无论是在艺术创作、医疗诊断还是自然语言处理,生成对抗网络都将持续发挥着重要的作用。


🧸结尾


❤️ 感谢您的支持和鼓励! 😊🙏
📜您可能感兴趣的内容:

  • 【Java面试技巧】Java面试八股文 - 掌握面试必备知识(目录篇)
  • 【Java学习路线】2023年完整版Java学习路线图
  • 【AIGC人工智能】Chat GPT是什么,初学者怎么使用Chat GPT,需要注意些什么
  • 【Java实战项目】SpringBoot+SSM实战:打造高效便捷的企业级Java外卖订购系统
  • 【数据结构学习】从零起步:学习数据结构的完整路径

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/113357.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kotlin实现猜数游戏

游戏规则 1.程序随机生成一个1到100的数字,作为MagicNumber 2.用户根据提示输入数据,只有三次机会输入数据 代码 代码很简单,使用了let内置函数 fun main() {//生成随机数可以使用java的方法//val magicNumber Random().nextInt(11)val ma…

〔020〕Stable Diffusion 之 骨骼姿势 篇

✨ 目录 🎈 姿势检测 / OpenPose🎈 姿势检测 OpenPose 参数介绍🎈 姿势检测 OpenPose 基本使用🎈 深度库 / Depth Lib🎈 深度库 Depth Lib 参数介绍🎈 3D姿势检测 / 3D Openpose Editor🎈 3D姿势…

高忆管理:新手炒股入门零基础学?

炒股是一些人为了取得高额回报和更好的财政自由而进行的活动。但对许多新手而言,这是一个全新的领域,需求掌握许多根底常识才能够开始加入炒股商场。本文将为零根底的新手炒股入门供给一些主张和技巧: 一、学习根底常识 关于炒股入门的新手而…

16.poll机制

POLL机制 poll机制的底层实现原理:基于等待队列来实现。 poll()函数,poll()函数底层函数接口有一个对应的函数指针。当调用poll()函数的时候,会找到对应的file_operations的成员变量poll,最终会调用poll成员变量指向的函数指针。 …

Kotlin学习之密封类

Kotlin中的密封类: kotlin中的密封类,用关键词Sealed修饰,且还有一个规定:Sealed类的子类应该是Sealed类的嵌套类,或者应该在与Sealed类相同的文件中声明。 当我们想定义一个有相同父类,但是有不同子类的时候&#xf…

Jmeter性能压测 —— 高并发思路

测试场景&#xff1a;模拟双11&#xff0c;百万级的订单量一个物流信息的查询接口。 条件&#xff1a;接口响应时间<150ms以内。10万并发量每秒。 设计性能测试方案 1、生产环境 ①10W/S--并发量&#xff08;架构师/技术负责人提供&#xff09; ②20台机器&#xff08;…

【Java并发】聊聊对象内存布局和syn锁升级过程

对象存储解析&#xff1a;一个空Object对象到底占据多少内存&#xff1f; 对象内存布局 Mark Word占用8字节&#xff0c;类型指针占用8个字节&#xff0c;对象头占用16个字节。 好了&#xff0c;我们来看一下一个Object对占用多少空间&#xff0c; 因为java默认是开启压缩…

springboot整合Excel填充数据

填充一组数据 准备模板 封装数据 import java.util.ArrayList; import java.util.List;/*** 使用实体类封装填充数据** 实体中成员变量名称需要和Excel表各种{}包裹的变量名匹配*/ Data public class FillData {private String name;private int age;// 生成多组数据代码pub…

【Bug】Ubuntu 有线设置打不开无反应

前言&#xff1a; 突然有线设置就没法启用了&#xff0c;但是能联网&#xff0c;能查看ip 解决&#xff1a; 最后安装了一个新的依赖包&#xff1a; sudo apt install gnome-control-center 然后就可以了 还有一个方法&#xff0c;没试过&#xff0c;但感觉有点道理的&#…

如何利用 SmartX 存储性能测试工具 OWL 优化性能管理?

作者&#xff1a;深耕行业的 SmartX 金融团队 张瑞松 运维人员在日常管理集群时&#xff0c;有时难免会产生这样的困惑&#xff1a; 新业务准备上线&#xff0c;在具备多套存储的情况下&#xff0c;应如何选择承载业务的存储环境&#xff1f; 业务虚拟机刚上线时运行速度很快…

Databricks 入门之sql(二)常用函数

1.类型转换函数 使用CAST函数转换数据类型&#xff08;可以起别名&#xff09; SELECTrating,CAST(timeRecorded as timestamp) FROMmovieRatings; 支持的数据类型有&#xff1a; BIGINT、BINARY、BOOLEAN、DATE 、DECIMAL(p,s)、 DOUBLE、 FLOAT、 INT、 INTERVAL interva…

transformer实现词性标注

1、self-attention 1.1、self-attention结构图 上图是 Self-Attention 的结构&#xff0c;在计算的时候需要用到矩阵 Q(查询), K(键值), V(值)。在实际中&#xff0c;Self-Attention 接收的是输入(单词的表示向量 x组成的矩阵 X) 或者上一个 Encoder block 的输出。而 Q, K, V…

新手将最简单的springboot部署上tomcat出现的意外问题

现阶段springboot部署到tomcat的文章一抓一大把且都相同,便贴一个地址以展示流程: SpringBoot打war包部署Tomcat(最全)_spring boot war 部署tomcat_聊Java的博客-CSDN博客 那么就说一下我出现的问题: 在完整复现流程且确认代码无误的情况下,部署到tomcat,此时问题出现了:启动…

(线特征)opencv+opencv contribute 配置

写一篇博客&#xff0c;记录开始线特征slam的历程。 在配置环境的时候&#xff0c;可以发现大多数都是用到了opencv3.4.16和其contribute版本&#xff0c;这里进行一个相关操作的教学。配置环境是在Ubuntu下面进行的&#xff0c;建议使用Ubuntu18来进行线特征的配置以及代码的…

【Axure高保真原型】中继器网格图片拖动摆放

今天和大家分享中继器网格图片拖动摆放的原型模板&#xff0c;我们可以通过鼠标拖动来移动图片&#xff0c;拖动过程其他图标会根据图片拖动自动排列&#xff0c;松开鼠标是图片停放在指定位置&#xff0c;其他图标自动排列。那这个模板是用中继器制作的&#xff0c;所以使用也…

培训机构到底靠不靠谱?

前言 英雄算法联盟八月集训 已经接近尾声&#xff0c;九月算法集训将于 09月01日&#xff08;明天&#xff09; 正式开始&#xff0c;目前已经提前开启报名&#xff0c;截至目前总人数为 2093 人&#xff0c;距离报名结束还有最后一天&#xff0c;报名方式见 这里&#xff0c;想…

经典文献阅读之--SLAMesh(网格化激光SLAM)

0. 简介 最近激光SLAM的新工作真的是越来越多了&#xff0c;而大多数当前的激光SLAM系统都是在点云中构建地图&#xff0c;即使在人眼看来是稠密的&#xff0c;但当放大时&#xff0c;点云是稀疏的。稠密地图对于机器人应用至关重要&#xff0c;例如基于地图的导航。由于内存成…

SQL语言-01

SQL Structured Query Language 的简单介绍 SQL 中的书写规则 SQL 中的数据类型

基于SpringBoot+Vue的旅游系统

摘 要 随着旅游业的发展&#xff0c;越来越多的人选择旅游作为自己的出行方式。在旅游规划过程中&#xff0c;旅游景点选择是至关重要的环节。本文提出了一种基于协同过滤推荐算法的旅游平台系统。该系统采用前后端分离的设计&#xff0c;主要使用了SpringBoot、Vue等技术&…

经纬恒润荣获吉利汽车“最佳价值贡献”奖

8月18日&#xff0c;以“全面向新 共创共赢”为主题&#xff0c;吉利汽车在宁波成功举行2023年电子电器核心供应商恳谈会。经纬恒润凭借在项目合作上持续创新、高效协同等优异表现&#xff0c;获得“最佳价值贡献”奖项。 作为国产汽车代表性品牌之一&#xff0c;吉利汽车积极推…