图像处理简介

目录

基本术语

1 .图像(image)

1.1 像素(Pixel)

1.2 颜色深度(Color Depth)

1.3 分辨率(Resolution)

1.4 像素宽高比(Pixel Aspect Ratio)

1.5 帧率(FPS)

1.6 码率(BR)

 1.  恒定码率(CBR)

2. 可变码率(VBR)

1.7 扫描

 1.隔行扫描(Interlaced)

2.逐行扫描

2. 颜色空间

2.1 采样方式

2.2.  YUV422采样的储存格式

                     1. YUYV格式

2. UYVY格式

3. YUV422P格式

   2.3   YUV420采样的储存格式

          1. YV12,YU12格式

        2. NV12,NV21格式

       2.4 总结

3.消除冗余

3.1怎么消除冗余


基本术语

1 .图像(image)

       可以将图像视为一个三维矩阵,分别为红色平面,绿色平面,和蓝色平面。我们把这个矩阵里的每一个点称为像素。像素的色彩由三原色的强度表示,例如一个红色像素是由强度为0的绿色,强度为0的蓝色和强度最大的红色组成。

1.1 像素(Pixel)

        像素是图像中的物理点,他是屏幕上表示图片的最小可控元素。例如上述中的各个分量表示的强度点,即为一个像素值。

1.2 颜色深度(Color Depth)

存储颜色的强度,需要占用一定大小的数据空间,这个大小被称为颜色深度,用于指示单个像素颜色的位数。假如每个颜色平面的强度占用8bit(0-255),那么颜色深度就是24bit,这样可以显示2的24次方种不同的颜色。

1.3 分辨率(Resolution)

        一张图片的像素的数量。通常表示为:widthxheight;

1.4 像素宽高比(Pixel Aspect Ratio)

        像素宽高比,也叫PAR,是一个数学比率,用于描述图像中像素的宽度和高度的比值。

1.5 帧率(FPS)

        将单位时间内连续切换n个视频画面,叫做帧率,其中n即为帧率。

1.6 码率(BR)

播放一段视频每秒所需的是数据量叫做比特率,即码率(BitRate)

              其计算公式为:Bitrate=width x height * bits_per_pixel *fps;

                           

       例如,一段视频每秒30帧,每个像素24bit,分辨率为480x240。如果我们不做压缩,他将需要82.944Mbps的带宽。

 1.  恒定码率(CBR)

         当比特率几乎恒定时称为恒定比特率(constant bitrate即 CBR)。

         以恒定的1.2Mbps码率播放如下内容:

2. 可变码率(VBR)

        当比特率可变时,称为可变比特率(Variable Bitrate即VBR),比如可变码率播放如下内容:

        前面连续黑帧率的时候,较低码率为200Kbps,后面实际的信息量的内容,以较高的码率2.4Mbps呈现,这样可以有效的优化带宽,并能够较好的呈现有价值的信息。

1.7 扫描

在传送图像的时候,将每一帧图像分解为像素,之后一个一个像素,一行一行顺序传送的方式就叫做扫描。

 1.隔行扫描(Interlaced)

在早期,工程师们想出了一项技术能将视频的感官帧率加倍而没有消耗额外带宽。这项技术被称为隔行扫描,总体来说,他在一个时间点发送一个画面用于填充屏幕的一半,而下一个时间点发送画面用于填充屏幕的另一半。

原理就是将一帧的这一幅画面分为两个场来扫描。先扫描奇数行得到第一场,然后扫描偶数行得到第二场。两个场加起来组成完整的画面。快速播放的时候由于视觉暂留效应,人眼不会注意到两场只有一半的扫描行,而会看到完整的一帧。

2.逐行扫描

在带宽充裕的今天,基本上都使用了逐行,按照每行来一次绘制。

2. 颜色空间

    一般来说,我们最熟悉的颜色空间是由RGB三基色组成的颜色空间,还有一种模型是将亮度,颜色分离开的,他被称为YCbCr,这种颜色模型使用Y来表示亮度,还有两个颜色通道:Cb(蓝色色度)和Cr(红色色度)。YCbCr可以由RGB转换得来,也可以转换回RGB。通过公式可以相互转换。

RGB ->YUV:

Y=0.299R+0.587G+0.114B

Cb=0.564(B-Y)

Cr=0.713(R-Y)

YUV->RGB:

R=Y + 1.402Cr

G=Y-0.344Cb – 0.714Cr

B=Y + 1.772Cb

2.1 采样方式

         主流的采样方式由三种,

                YUV4:4:4 每一个Y对应一组UV分量

                YUV4:2:2 每两个Y共用一组UV分量

                YUV4:2:0, 每四个Y共用一组UV分量

2.2.  YUV422采样的储存格式

                     1. YUYV格式

       从内存分布图可以看出,相邻的两个Y共用相邻的两个UV,比如坐标(0,0),与坐标(0,1)其中的像素点为Y0U0V0,Y1U0V0,其中他们UV分量是同一个值。那么相对于RGB88,存储数据量少多少呢?

       RGB888 size = 10*5(R) + 10*5(G) + 10*5(B) = 150byte

       YUYV size = 10*5(Y) + 10/2*5(U) + 10/2*5(V) =100byte  

也就是说YUYV的储存数据量是RGB888的数据量的2/3。但是显示效果几乎是一样的。

                    

2. UYVY格式

        与YUYV不同的是UV分量的排列顺序不同而已。

                    

3. YUV422P格式

YUV422P是一种平面模式,也就是说他们的YUV数据存储不是交错存储,而是先存储所有的Y分量,然后储存所有的U(Cb)分量,最后储存所有的V(Cr)分量.

每个分量的起始地址计算:

Y分量的地址:也就是内存的基地址

U分量的地址: base + 10x5(Y size)

V 分量的地址: base + 10x 5(y size) + 10x5/2(U size)

   2.3   YUV420采样的储存格式

          1. YV12,YU12格式

                与YUV422P的储存格式类似,将Y,U,V分量分别打包,依次存储。

       从内存分布图可以看出,相邻的四个Y共用相邻的两个UV,比如坐标(0,0),与坐标(0,1),坐标(0,2),坐标(0,3)其中的像素点为Y0U0V0,Y1U0V0,Y2U0V0,Y2U0V0,可以看出他们UV分量是同一个值。那么相对于RGB88,存储数据量少多少呢?

       RGB888 size = 12*5(R) + 12*5(G) + 12*5(B) = 180byte

       YUYV size = 12*5(Y) + 12/4*5(U) + 12/4*5(V) =90byte 

也就是说YUYV的储存数据量是RGB888的数据量的1/2。以损失极小的失真换来一倍的带宽,这是非常划算的。

每个分量的起始地址计算:

Y分量的地址:也就是内存的基地址

U分量的地址: base + 12x5(Y size)

V 分量的地址: base + 12x 5(y size) + 10x5/4(U size)

        2. NV12,NV21格式

         是一种two-plane模式,即Y和UV分为两个平面。与yuv420p不同的是,UV(CbCr)是交错存储,而不是分为三个平面。

       2.4 总结

              YUYV:是4:2:2[Y0 U0 Y1 V0]

              YUV420:y0u0v0 y1u0v0 y2u0v0 y3u0v0

              YUV420P:Y ,U ,V三个分量都是平面格式,也就是说三个分量的内存是连续的。

              YUV420SP,Y分量是平面格式,UV是交错存储的。

3.消除冗余

        冗余信息是指一帧或者多帧之间的多余信息,比如,一帧图片内的信息,很多都是蓝色,那么是否可以考虑用一个蓝色来编码其他相同颜色的内容呢?比如:一路码流,有连续N帧的内容都是禁止或者变化不大的,那这之间的每帧信息都有大量的重复冗余信息。如果不消除冗余数据,那么数据传输和存储上来说数据量太大了,基本上目前是无法接接受的。所以呢,我们需要对视频进行压缩,进行冗余消除。

3.1怎么消除冗余

        前面说了,可以通过压缩视频连续帧数据的方式来减小带宽和储存压力,那么具体是如何有效的压缩的呢?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/116124.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

sql各种注入案例

目录 1.报错注入七大常用函数 1)ST_LatFromGeoHash (mysql>5.7.x) 2)ST_LongFromGeoHash &#xff08;mysql>5.7.x&#xff09; 3)GTID (MySQL > 5.6.X - 显错<200) 3.1 GTID 3.2 函数详解 3.3 注入过程( payload ) 4)ST_Pointfromgeohash (mysql>5.…

day28 异常

to{}catch{} try{}catch{}的流传输 try {fis new FileInputStream("file-APP\\fos.txt");fos new FileOutputStream("fos.txt");int a ;while ((a fis.read())! -1){fos.write(a);}System.out.println(a); } catch (IOException e) {e.printStackTrace()…

关于Maxwell与Kafka和数据库的监控

1.Maxwell的配置 其实就是配置两端的配置信息,都要能连接上,然后才能去传输数据 config.properties #Maxwell数据发送目的地&#xff0c;可选配置有stdout|file|kafka|kinesis|pubsub|sqs|rabbitmq|redis producerkafka # 目标Kafka集群地址 kafka.bootstrap.servershadoop102…

机器学习概念

目录 一、人工智能、机器学习、深度学习的关系 二、什么是深度学习&#xff1f; 2.1 深度学习常用算法 一、人工智能、机器学习、深度学习的关系 人工智能、机器学习和深度学习的关系如下所示。 二、什么是深度学习&#xff1f; 深度学习( DL, Deep Learning) 是机器学习 …

【操作记录】pytorch_geometric安装方法

pytorch_geometric安装方法 github地址 主要不要直接pip install安装&#xff0c;会由于依赖无法安装而失败 点击here手动安装依赖 选择对应的pytorch版本&#xff0c;我的是Win10 Python3.8.3Pytorch1.8.1CUDA10.2 手动下载四个依赖包本地安装&#xff1a; 主要不要直接&am…

【深度学习】ChatGPT

本文基于Andrej Karpathy(OpenAI 联合创始人&#xff0c;曾担任特斯拉的人工智能和自动驾驶视觉主管)在Microsoft Build 2023上的演讲整理而成&#xff08;完整的视频在文末&#xff0c;直接拖到文章底部&#xff09;&#xff0c;主要分为2大部分&#xff1a; 1.如何训练GPT(可…

Git和Github的基本用法

目录 背景 下载安装 安装 git for windows 安装 tortoise git 使用 Github 创建项目 注册账号 创建项目 下载项目到本地 Git 操作的三板斧 放入代码 三板斧第一招: git add 三板斧第二招: git commit 三板斧第三招: git push 小结 &#x1f388;个人主页&#xf…

一文了解tcp/ip协议的运行原理

接触代理ip的人都了解https/sock5等ip协议&#xff0c;那么TCP/IP 协议又是什么&#xff1f; 一、什么是TCP/IP 协议&#xff1f; TCP/IP 协议实际上是一系列网络通信协议的一个统称&#xff0c;他负责具体的数据传输工作&#xff0c;核心的两个协议包括TCP以及IP&#xff0c…

搭建STM32F407的Freertos系统(基于STM32CubeMX)

本人长期开发Linux、Windows上应用软件&#xff0c;一直以来MCU开发有所接触&#xff0c;但较少&#xff08;最近项目需要&#xff0c;小公司么&#xff0c;都得会&#xff0c;被逼的&#xff09;&#xff0c;好在有STM32CubeMX这样工具&#xff0c;貌似就是我想要的工具。 本次…

自然语言处理实战项目16- 基于CPU的大语言模型的实战训练全流程指导,模型调优与评估

大家好,我是微学AI,今天给大家介绍一下自然语言处理实战项目16- 基于CPU的生成式大语言模型的实战训练全流程详细讲解,模型调优与评估。该流程涵盖了数据准备、数据预处理、词表构建、模型选择与配置、模型训练、模型调优和模型评估等步骤。通过不断迭代和优化,可以提高模型…

C++信息学奥赛1184:明明的随机数

#include <bits/stdc.h> using namespace std; int main() {int n; // 数组长度cin >> n; // 输入数组长度int arr[n]; // 定义整数数组&#xff0c;用于存储输入的整数// 输入数组元素for (int i 0; i < n; i){cin >> arr[i];}int e 0; // 计数器&…

数据结构体--5.0图

目录 一、定义 二、图的顶点与边之间的关系 三、图的顶点与边之间的关系 四、连通图 五、连通图的生成树定义 一、定义 图&#xff08;Graph&#xff09;是由顶点的又穷非空集合合顶点之间边的集合组成&#xff0c;通常表示为&#xff1a;G&#xff08;V&#xff0c;E&…

【UIPickerView案例03-点餐系统之随机点餐 Objective-C语言】

一、先来看看我们这个示例程序里面,随机点餐是怎么做的 1.点击:“随机点餐”按钮 大家能想到,它是怎么实现的吗 1)首先,点击”随机点餐“按钮,的时候,你要让这个pickerView,进行随机选中,那么,得监听它的点击 2)然后呢,让pickeView选中数据, 3)然后呢,把那个…

Leetcode54螺旋矩阵

思路&#xff1a;用set记录走过的地方&#xff0c;记下走的方向&#xff0c;根据方向碰壁变换 class Solution:def spiralOrder(self, matrix: list[list[int]]) -> list[int]:max_rows len(matrix)max_cols len(matrix[0])block_nums max_cols * max_rowscount 1i 0j…

详解mysql事务,事务并发安全问题的复现以及大事务的优化

好文推荐&#xff1a; 2.5万字详解23种设计模式 springboot 实现延时队列&#xff08;超级实用&#xff09; 2.5万字讲解DDD领域驱动设计 文章目录 1. 事务定义2. 事务特性&#xff08;ACID&#xff09;3. 事务并发问题4. 事务隔离级别5. 基础命令6. 脏读复现7. 不可重复读复现…

网络服务第二次作业

[rootlocalhost ~]# vim /etc/httpd/conf.d/vhosts.conf <Virtualhost 192.168.101.200:80> #虚拟主机IP及端口 DocumentRoot /www/openlab #网页文件存放目录 ServerName www.openlab.com #服务器域名 </VirtualHost> …

【力扣每日一题】2023.9.2 最多可以摧毁的敌人城堡数量

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 这道题难在阅读理解&#xff0c;题目看得我匪夷所思&#xff0c;错了好多个测试用例才明白题目说的是什么。 我简单翻译一下就是寻找1和…

枚举的简单介绍

目录 概念&#xff1a; 枚举的声明&#xff1a; 枚举的使用&#xff1a; 枚举的取值&#xff1a; 枚举的优点&#xff1a; #define的功能&#xff1a; 而与#define对比&#xff0c;枚举的优点有&#xff1a; 概念&#xff1a; 枚举顾名思义就是⼀⼀列举。 把可能的取值…

8.react18并发模式与startTransition(搜索高亮思路)

React 18 之前,渲染是一个单一的,不间断的,同步的事务,一旦渲染开始,就不能被中断 React 18引入并发模式,它允许你将标记更新作为一个transitions,这会告诉React他们可以被中断执行.这样可以将紧急任务先更新,不紧急任务后更新. 将任务给紧急任务先执行, 优先级低的任务后执行…

windows安装Scala

Windows安装Scala 下载地址&#xff1a;https://downloads.lightbend.com/scala/2.11.11/scala-2.11.11.zip 解压完成之后 配置环境变量