11.物联网lwip,网卡原理

一。LWIP协议栈内存管理

1.LWIP内存管理方案

(1)堆heap

1.灰色为已使用内存

2.黑色为未使用内存

3.紫色为使用后内存

按照某种算法,把数据放在内存块中

(2)池pool

设置内存池,设置成大小相同的内存块。

 2.LWIP内存管理

(1)内存池API

//内存池初始化
void  memp_init(void);
//内存池分配
void *memp_malloc(memp_t type);
//内存池释放
void  memp_free(memp_t type, void *mem);

(2)内存堆API

//内存堆初始化
void  mem_init(void);
//内存堆分配内存
void *mem_malloc(mem_size_t size);
//内存堆释放内存
void  mem_free(void *mem);

3.网络数据包的管理

(1)pbuf解释

        1.pbuf就是一个描述协议栈中数据包的数据结构,LwIP 中在 pbuf.c和 pubf.h实现了协议栈数据包管理的所有函数与数据结构

        2.pbuf结构体

        struct pbuf{

                //指向下一跳

                struct pbuf *next;

                //指向实际数据存放地址

                void* payload;

                //total全部,表示全部的长度

                // p->tot_len == p->len + (p->next? p->next->tot_len: 0)获取长度               

                u16_t tot_len;

                //本pbuf的长度

                u16_t len;

                //选择样式,因为存储TCP数据,UDP数据,数据链路数据存储所需大小是不一样

                u8_t type;

                //标识

                u8_t flags;

                  //引用计数总是等于指针的数目

                *指的是这个函数。这可以是来自应用程序的指针,

                *堆栈本身,或者pbuf->链中的next指针。

                u16_t ref;

        }

pbuf类型--》选择不同类型,使用不同的物理结构存储,对数据处理更加高效

//pbuf.h
typedef enum {
  PBUF_RAM,
  PBUF_ROM,
  PBUF_REF,
  PBUF_POOL
} pbuf_type;

pbuf层--》选此类型是对不同报文的区分,比如PBUF_TRANSPORT传输层数据,PBUF_IP网络层数据,PBUF_LINK链路层数据,PBUF_RAW_TX物理层数据。

//pbuf.h
typedef enum {
  PBUF_TRANSPORT,
  PBUF_IP,
  PBUF_LINK,
  PBUF_RAW_TX,
  PBUF_RAW
} pbuf_layer;

pbuf的申请与释放

1.申请--》使用上述的两个结构体

struct pbuf *pbuf_alloc(pbuf_layer layer, u16_t length, pbuf_type type);

2.释放

u8_t pbuf_free(struct pbuf *p);

3.收缩链路的长度

void pbuf_realloc(struct pbuf *p, u16_t new_len);

4.调整有效负载指针以隐藏或显示有效负载中的标头。

u8_t pbuf_header(struct pbuf *p, s16_t header_size_increment);

5.将应用程序提供的数据复制到pbuf中。

err_t pbuf_take(struct pbuf *buf, const void *dataptr, u16_t len);

二。netif相关结构体

1.netif flag

/** 
     这个netif网络接口,可以进行正常使用(lwIP可以正常使用了)
 */
#define NETIF_FLAG_UP           0x01U
/** 
    广播通讯的标志
*/
#define NETIF_FLAG_BROADCAST    0x02U
/** 
    STM32 MAC和PHY可以正常使用
*/
#define NETIF_FLAG_LINK_UP      0x04U
/** 
    ARP标志
*/
#define NETIF_FLAG_ETHARP       0x08U
/** 
     TCP/IP协议正常通信
 */
#define NETIF_FLAG_ETHERNET     0x10U

2.netif结构体

//netif.h
struct netif {
  /** 链表指针 */
  struct netif *next;

#if LWIP_IPV4
  /** 
      ip地址
      子网掩码
      网关地址
  */
  ip_addr_t ip_addr;
  ip_addr_t netmask;
  ip_addr_t gw;
#endif /* LWIP_IPV4 */
  /** 
      netif 数据包输入接口函数指针
  */
  netif_input_fn input;
#if LWIP_IPV4
  /** 
      netif 数据包输出接口函数指针
  */
  netif_output_fn output;
#endif /* LWIP_IPV4 */
  /** 
      链路层数据输出接口函数指针
  */
  netif_linkoutput_fn linkoutput;
#if LWIP_NETIF_STATUS_CALLBACK
  /** 
      当netif 状态发生变化时,此接口函数会调用
   */
  netif_status_callback_fn status_callback;
#endif /* LWIP_NETIF_STATUS_CALLBACK */
#if LWIP_NETIF_LINK_CALLBACK
  /** 
          PHY必须和交换机或者路由器或者其他具备网卡的主机相连接,我们才可能正常通信
          比如 路由器突然断电,这个函数就会被调用
   */
  netif_status_callback_fn link_callback;
#endif /* LWIP_NETIF_LINK_CALLBACK */
#if LWIP_NETIF_REMOVE_CALLBACK
  /** 
      netif 移除网络驱动接口,这个函数会被调用
  */
  netif_status_callback_fn remove_callback;
#endif /* LWIP_NETIF_REMOVE_CALLBACK */
  /** 
      主机的状态
  */
  void *state;
#if LWIP_NETIF_HOSTNAME
  /*
      自定义的主机名称
  */
  const char*  hostname;
#endif /* LWIP_NETIF_HOSTNAME */
#if LWIP_CHECKSUM_CTRL_PER_NETIF
  u16_t chksum_flags;
#endif /* LWIP_CHECKSUM_CTRL_PER_NETIF*/
  /** 
      数据链路层最大传输大小
  */
  u16_t mtu;
  /**
      mac地址长度
  */
  u8_t hwaddr_len;
  /** 
      mac地址
  */
  u8_t hwaddr[NETIF_MAX_HWADDR_LEN];
  /** 
      当前的netif的状态,其实就是上面的netif_flag
  */
  u8_t flags;
  /** 
      网卡驱动的名称
  */
  char name[2];
  /** 
      网卡驱动的硬件编号
  */
  u8_t num;
#if LWIP_IPV4 && LWIP_IGMP
  /** 
      组播底层接口
  */
  netif_igmp_mac_filter_fn igmp_mac_filter;
#endif /* LWIP_IPV4 && LWIP_IGMP */
};

 2.netif API

netif_add

/**
    添加网卡驱动到lwip
 */
struct netif *netif_add(struct netif *netif,const ip4_addr_t *ipaddr, const ip4_addr_t *netmask, const ip4_addr_t *gw,void *state, netif_init_fn init, netif_input_fn input);

 netif_set_default

/**
    把网卡恢复出厂设置,目前lwip有一套默认参数
 */
void netif_set_default(struct netif *netif);

netif_set_up&netif_set_down

/**
    设置我们网卡 工作状态 是上线还是离线
 */
void netif_set_up(struct netif *netif);
void netif_set_down(struct netif *netif);

callback

// 对于用户来说,我需要自己去实现link_callback,断开连接的时候会回调这个函数
#if LWIP_NETIF_LINK_CALLBACK
void netif_set_link_callback(struct netif *netif, netif_status_callback_fn link_callback);
#endif /* LWIP_NETIF_LINK_CALLBACK */

3.netif 底层接口(跟硬件打交道)

/**
    初始化 网卡驱动(会调用底层驱动)
 */
err_t ethernetif_init(struct netif *netif);

/**
    网卡数据输入(会调用底层接口)
 */
void ethernetif_input(void const * argument);

/**
    网卡底层驱动,主要针对硬件(STM32网卡初始化会在此调用)
 */
static void low_level_init(struct netif *netif);

/**
    底层网卡的数据输出,实际的数据输出,是通过pbuf进行封装管理的
 */

static err_t low_level_output(struct netif *netif, struct pbuf *p);

/**
    底层网卡的数据接口,当接收到网卡数据后,会通过此函数,封装为pbuf提供上层使用
 */
static struct pbuf * low_level_input(struct netif *netif);

三。LWIP网卡设计

1.tcpip_init

/**
 * @工作在操作系统下的
 * Initialize this module:
 * - 初始化所有的子功能模块
 * - 启动tcp/ip任务(tcp/ip网络协议栈的实现是一个任务里面执行的)
 *
 * @param 用于用户初始化的函数指针,在lwip初始化完成,tcp/ip任务开始执行就是进行调用
 * @param 用户初始化相关参数传入
 */
void tcpip_init(tcpip_init_done_fn initfunc, void *arg)
{
  //lwip的初始化---初始化lwip所有功能模块
  lwip_init();
 //用户初始化函数指针赋值,参数赋值
  tcpip_init_done = initfunc;
  tcpip_init_done_arg = arg;
 //消息邮箱(freeRTOS是通过消息队列实现),任务与任务间消息通信,网卡收到数据,网络分层解析,我们的任务怎么知道呢,就是通过消息邮箱进行传输
  if (sys_mbox_new(&mbox, TCPIP_MBOX_SIZE) != ERR_OK) {
    LWIP_ASSERT("failed to create tcpip_thread mbox", 0);
  }
#if LWIP_TCPIP_CORE_LOCKING
    //创建互斥锁(互斥信号量),保护共享资源的
  if (sys_mutex_new(&lock_tcpip_core) != ERR_OK) {
    LWIP_ASSERT("failed to create lock_tcpip_core", 0);
  }
#endif /* LWIP_TCPIP_CORE_LOCKING */
  //这是标准的cmis接口,其实内部调用的freeRTOS的创建任务接口
  sys_thread_new(TCPIP_THREAD_NAME, tcpip_thread, NULL, TCPIP_THREAD_STACKSIZE, TCPIP_THREAD_PRIO);
}

2.补充:lwip_init这是在裸机下的初始化

/**
 * @ingroup 工作在裸机模式
 * Initialize all modules.
 * Use this in NO_SYS mode. Use tcpip_init() otherwise.
    重点就要分析,都有哪些功能模块
 */
void lwip_init(void)
{
  /* Modules initialization */
  //状态初始化
  stats_init();
#if !NO_SYS
  //与操作系统相关的初始化
  sys_init();
#endif /* !NO_SYS */
  //内存堆 内存池 pbuf netif初始化
  mem_init();
  memp_init();
  pbuf_init();
  netif_init();
#if LWIP_IPV4
  //ip层初始化
  ip_init();
#if LWIP_ARP
  //arp+以太网相关的初始化
  etharp_init();
#endif /* LWIP_ARP */
#endif /* LWIP_IPV4 */
#if LWIP_RAW
  //原生接口初始化
  raw_init();
#endif /* LWIP_RAW */
#if LWIP_UDP
  udp_init();
#endif /* LWIP_UDP */
#if LWIP_TCP
  tcp_init();
#endif /* LWIP_TCP */
#if LWIP_IGMP
  igmp_init();
#endif /* LWIP_IGMP */
#if LWIP_DNS
  dns_init();
#endif /* LWIP_DNS */
#if PPP_SUPPORT
  ppp_init();
#endif
 
#if LWIP_TIMERS
  //lwip内部有很多超时机制,就是通过下面这个timeouts实现的(一个软件定时器)
  sys_timeouts_init();
#endif /* LWIP_TIMERS */
}

3.HAL库实现lwip的初始化

/**
  * HAL库实现的lwip初始化函数
  */
void MX_LWIP_Init(void)
{
  /* IP 地址初始化 */
  IP_ADDRESS[0] = 192;
  IP_ADDRESS[1] = 168;
  IP_ADDRESS[2] = 1;
  IP_ADDRESS[3] = 10;
  NETMASK_ADDRESS[0] = 255;
  NETMASK_ADDRESS[1] = 255;
  NETMASK_ADDRESS[2] = 255;
  NETMASK_ADDRESS[3] = 0;
  GATEWAY_ADDRESS[0] = 192;
  GATEWAY_ADDRESS[1] = 168;
  GATEWAY_ADDRESS[2] = 1;
  GATEWAY_ADDRESS[3] = 1;
  
  /* 初始化lwip协议栈 */
  tcpip_init( NULL, NULL );

  /* 
      数组格式的IP地址转换为lwip格式的地址
  
  */
  IP4_ADDR(&ipaddr, IP_ADDRESS[0], IP_ADDRESS[1], IP_ADDRESS[2], IP_ADDRESS[3]);
  IP4_ADDR(&netmask, NETMASK_ADDRESS[0], NETMASK_ADDRESS[1] , NETMASK_ADDRESS[2], NETMASK_ADDRESS[3]);
  IP4_ADDR(&gw, GATEWAY_ADDRESS[0], GATEWAY_ADDRESS[1], GATEWAY_ADDRESS[2], GATEWAY_ADDRESS[3]);

  /* 
      装载网卡驱动,并初始化网卡
  */
  netif_add(&gnetif, &ipaddr, &netmask, &gw, NULL, &ethernetif_init, &tcpip_input);

  /* 
      gnetif注册为默认网卡驱动
  */
  netif_set_default(&gnetif);
// 判断phy和mac层是否正常工作
  if (netif_is_link_up(&gnetif))
  {
    /* 
        netif 网卡驱动可以正常使用,上线
    */
    netif_set_up(&gnetif);
  }
  else
  {
    /* 
    netif 网卡驱动下线
    */
    netif_set_down(&gnetif);
  }

/* USER CODE BEGIN 3 */

/* USER CODE END 3 */
}

4.以太网的初始化 ethernetif_init

/**
    以太网初始化 这是一个分层接口,最终会调用底层接口
 */
err_t ethernetif_init(struct netif *netif)
{

#if LWIP_IPV4
#if LWIP_ARP || LWIP_ETHERNET
//arp相关的函数接口赋值
#if LWIP_ARP
  netif->output = etharp_output;
#else
  netif->output = low_level_output_arp_off;
#endif /* LWIP_ARP */
#endif /* LWIP_ARP || LWIP_ETHERNET */
#endif /* LWIP_IPV4 */
//链路层数据输出函数接口赋值
netif->linkoutput = low_level_output;
/* 
    底层接口初始化
*/
low_level_init(netif);
  return ERR_OK;
}

low_level_init

/**
    硬件初始化,其实就STM32 ETH外设初始化
 */
static void low_level_init(struct netif *netif)

  uint32_t regvalue = 0;
  HAL_StatusTypeDef hal_eth_init_status;
  
/* Init ETH */

  uint8_t MACAddr[6] ;
  heth.Instance = ETH;
  heth.Init.AutoNegotiation = ETH_AUTONEGOTIATION_ENABLE;
  heth.Init.PhyAddress = DP83848_PHY_ADDRESS;
  MACAddr[0] = 0x00;
  MACAddr[1] = 0x80;
  MACAddr[2] = 0xE1;
  MACAddr[3] = 0x00;
  MACAddr[4] = 0x00;
  MACAddr[5] = 0x00;
  heth.Init.MACAddr = &MACAddr[0];
  heth.Init.RxMode = ETH_RXINTERRUPT_MODE;
  heth.Init.ChecksumMode = ETH_CHECKSUM_BY_HARDWARE;
  heth.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;

  /* USER CODE BEGIN MACADDRESS */
    
  /* USER CODE END MACADDRESS */
  
  hal_eth_init_status = HAL_ETH_Init(&heth);

  if (hal_eth_init_status == HAL_OK)
  {
    /* 
        重点在这,当初始化成功后,会置位flag,同时在tcp/ip
        初始化完毕后,会进行判断,此标志位决定网卡驱动是否
        可以正常使用
    */  
    netif->flags |= NETIF_FLAG_LINK_UP;
  }
  /* Initialize Tx Descriptors list: Chain Mode */
  HAL_ETH_DMATxDescListInit(&heth, DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
     
  /* Initialize Rx Descriptors list: Chain Mode  */
  HAL_ETH_DMARxDescListInit(&heth, DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
 
#if LWIP_ARP || LWIP_ETHERNET 

  /* 
      MAC地址初始化
  */
  netif->hwaddr_len = ETH_HWADDR_LEN;
  netif->hwaddr[0] =  heth.Init.MACAddr[0];
  netif->hwaddr[1] =  heth.Init.MACAddr[1];
  netif->hwaddr[2] =  heth.Init.MACAddr[2];
  netif->hwaddr[3] =  heth.Init.MACAddr[3];
  netif->hwaddr[4] =  heth.Init.MACAddr[4];
  netif->hwaddr[5] =  heth.Init.MACAddr[5];
  
  /* maximum transfer unit */
  netif->mtu = 1500;
  
  /* Accept broadcast address and ARP traffic */
  /* don't set NETIF_FLAG_ETHARP if this device is not an ethernet one */
  #if LWIP_ARP
    netif->flags |= NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP;
  #else 
    netif->flags |= NETIF_FLAG_BROADCAST;
  #endif /* LWIP_ARP */
  
/* 
    二值信号量,用于信息同步
    当网卡接口到数据后,会释放二值信号量
    让其他任务进行解析
*/
  osSemaphoreDef(SEM);
  s_xSemaphore = osSemaphoreCreate(osSemaphore(SEM), 1);

/* 
    创建网卡数据接收解析任务-ethernetif_input
*/
  osThreadDef(EthIf, ethernetif_input, osPriorityRealtime, 0, INTERFACE_THREAD_STACK_SIZE);
  osThreadCreate (osThread(EthIf), netif);
  /* 
      使能 网卡 发送和接口
  */
  HAL_ETH_Start(&heth);
  
  /**** 
      上面的都是针对STM32 ETH外设进行初始化
      但是实际网络交互是用过PHY
      下面就是初始化PHY
  
  ****/
  /* Read Register Configuration */
  HAL_ETH_ReadPHYRegister(&heth, PHY_MICR, &regvalue);
  
  regvalue |= (PHY_MICR_INT_EN | PHY_MICR_INT_OE);

  /* Enable Interrupts */
  HAL_ETH_WritePHYRegister(&heth, PHY_MICR, regvalue );
  
  /* Read Register Configuration */
  HAL_ETH_ReadPHYRegister(&heth, PHY_MISR, &regvalue);
  
  regvalue |= PHY_MISR_LINK_INT_EN;
    
  /* Enable Interrupt on change of link status */
  HAL_ETH_WritePHYRegister(&heth, PHY_MISR, regvalue);

/* USER CODE BEGIN PHY_POST_CONFIG */ 
    
/* USER CODE END PHY_POST_CONFIG */

#endif /* LWIP_ARP || LWIP_ETHERNET */

/* USER CODE BEGIN LOW_LEVEL_INIT */ 
    
/* USER CODE END LOW_LEVEL_INIT */
}

底层数据收发

HAL_ETH_RxCpltCallback

/**
  * @brief  Ethernet Rx Transfer completed callback
  * @param  heth: ETH handle
  * @retval None
  */
void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
{
  osSemaphoreRelease(s_xSemaphore);
}

ethernetif_input

/**
 */
void ethernetif_input(void const * argument)
{
  struct pbuf *p;
  struct netif *netif = (struct netif *) argument;
  
  for( ;; )
  {
    if (osSemaphoreWait(s_xSemaphore, TIME_WAITING_FOR_INPUT) == osOK)
    {
      do
      {   
        p = low_level_input( netif );
        if   (p != NULL)
        {
          if (netif->input( p, netif) != ERR_OK )
          {
            pbuf_free(p);
          }
        }
      } while(p!=NULL);
    }
  }
}

low_level_input

/**

   */
static struct pbuf * low_level_input(struct netif *netif)
{
  struct pbuf *p = NULL;
  struct pbuf *q = NULL;
  uint16_t len = 0;
  uint8_t *buffer;
  __IO ETH_DMADescTypeDef *dmarxdesc;
  uint32_t bufferoffset = 0;
  uint32_t payloadoffset = 0;
  uint32_t byteslefttocopy = 0;
  uint32_t i=0;
  

  /* 
      通过HAL库,获取网卡帧数据
  */
  if (HAL_ETH_GetReceivedFrame_IT(&heth) != HAL_OK)
    return NULL;
  
  /* 
      获取网卡数据超度,及内存地址
  */
  len = heth.RxFrameInfos.length;
  buffer = (uint8_t *)heth.RxFrameInfos.buffer;
  //网卡中数据有效
  if (len > 0)
  {
    /* 
        网卡数据不能大于1500
        属于原始层接口
    
    */
    p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
  }
  //如果pbuf创建成功,则从ETH中拷贝数据到pbuf里,最终把pbuf返回给上层应用
  if (p != NULL)
  {
    dmarxdesc = heth.RxFrameInfos.FSRxDesc;
    bufferoffset = 0;
    for(q = p; q != NULL; q = q->next)
    {
      byteslefttocopy = q->len;
      payloadoffset = 0;
      
      /* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
      while( (byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE )
      {
        /* Copy data to pbuf */
        memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset));
        
        /* Point to next descriptor */
        dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
        buffer = (uint8_t *)(dmarxdesc->Buffer1Addr);
        
        byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
        payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
        bufferoffset = 0;
      }
      /* Copy remaining data in pbuf */
      memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), byteslefttocopy);
      bufferoffset = bufferoffset + byteslefttocopy;
    }
  }  
  
    /* Release descriptors to DMA */
    /* Point to first descriptor */
    dmarxdesc = heth.RxFrameInfos.FSRxDesc;
    /* Set Own bit in Rx descriptors: gives the buffers back to DMA */
    for (i=0; i< heth.RxFrameInfos.SegCount; i++)
    {  
      dmarxdesc->Status |= ETH_DMARXDESC_OWN;
      dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
    }
    
    /* Clear Segment_Count */
    heth.RxFrameInfos.SegCount =0;  
  
  /* When Rx Buffer unavailable flag is set: clear it and resume reception */
  if ((heth.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)  
  {
    /* Clear RBUS ETHERNET DMA flag */
    heth.Instance->DMASR = ETH_DMASR_RBUS;
    /* Resume DMA reception */
    heth.Instance->DMARPDR = 0;
  }
  return p;
}

low_level_output

/**

 */

static err_t low_level_output(struct netif *netif, struct pbuf *p)
{
  err_t errval;
  struct pbuf *q;
  uint8_t *buffer = (uint8_t *)(heth.TxDesc->Buffer1Addr);
  __IO ETH_DMADescTypeDef *DmaTxDesc;
  uint32_t framelength = 0;
  uint32_t bufferoffset = 0;
  uint32_t byteslefttocopy = 0;
  uint32_t payloadoffset = 0;
  DmaTxDesc = heth.TxDesc;
  bufferoffset = 0;
  
  /* copy frame from pbufs to driver buffers */
  for(q = p; q != NULL; q = q->next)
    {
      /* Is this buffer available? If not, goto error */
      if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
      {
        errval = ERR_USE;
        goto error;
      }
    
      /* Get bytes in current lwIP buffer */
      byteslefttocopy = q->len;
      payloadoffset = 0;
    
      /* Check if the length of data to copy is bigger than Tx buffer size*/
      while( (byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE )
      {
        /* Copy data to Tx buffer*/
        memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), (ETH_TX_BUF_SIZE - bufferoffset) );
      
        /* Point to next descriptor */
        DmaTxDesc = (ETH_DMADescTypeDef *)(DmaTxDesc->Buffer2NextDescAddr);
      
        /* Check if the buffer is available */
        if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
        {
          errval = ERR_USE;
          goto error;
        }
      
        buffer = (uint8_t *)(DmaTxDesc->Buffer1Addr);
      
        byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
        payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
        framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
        bufferoffset = 0;
      }
    
      /* Copy the remaining bytes */
      memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset), (uint8_t*)((uint8_t*)q->payload + payloadoffset), byteslefttocopy );
      bufferoffset = bufferoffset + byteslefttocopy;
      framelength = framelength + byteslefttocopy;
    }
  
  /* 
      把pbuf里面的数据,发送到ETH外设里面
  */ 
  HAL_ETH_TransmitFrame(&heth, framelength);
  
  errval = ERR_OK;
  
error:
  
  /* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
  if ((heth.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET)
  {
    /* Clear TUS ETHERNET DMA flag */
    heth.Instance->DMASR = ETH_DMASR_TUS;

    /* Resume DMA transmission*/
    heth.Instance->DMATPDR = 0;
  }
  return errval;
}

解释:lwip的移植与裁剪

1.移植文件的存放地

(1)打开工程文件,进入根目录下

(2)middlewares文件夹下就是移植所需要的文件,有下图可知有Freertos与lwip

(3)这里主要看LWIP的移植,src为经常使用的.c与.h文件,system即为移植文件存方地。

2.移植步骤

(1)网卡驱动        ETH以太网接口

<1>lwip

<2>ethernetif

(2)操作系统        Freertos配置

<1>sys.arch.h

<2>sys.arch.c

(3)配置选项

<1>lwipopt        常用的宏定义放在这里

<2>opt        规定的宏定义存放

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/116554.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM调优指令参数

常用命令查找文档站点&#xff1a;https://docs.oracle.com/javase/8/docs/technotes/tools/unix/index.html -XX:PrintFlagsInitial 输出所有参数的名称和默认值&#xff0c;默认不包括Diagnostic和Experimental的参数。可以配合 -XX:UnlockDiagnosticVMOptions和-XX:UnlockEx…

NoSQL数据库介绍+Redis部署

目录 一、NoSQL概述 1、数据的高并发读写 2、海量数据的高效率存储和访问 3、数据库的高扩展和高可用 二、NoSQL的类别 1、键值存储数据库 2、列存储数据库 3、文档型数据库 4、图形化数据库 三、分布式数据库中的CAP原理 1、传统的ACID 1&#xff09;、A--原子性 …

Java版本工程管理系统源码企业工程项目管理系统简介

一、立项管理 1、招标立项申请 功能点&#xff1a;招标类项目立项申请入口&#xff0c;用户可以保存为草稿&#xff0c;提交。 2、非招标立项申请 功能点&#xff1a;非招标立项申请入口、用户可以保存为草稿、提交。 3、采购立项列表 功能点&#xff1a;对草稿进行编辑&#x…

大数据专业毕业能从事什么工作

大数据从业领域很宽广&#xff0c;不管是科技领域还是食品产业&#xff0c;零售业等都是需要大数据人才进行大数据的处理&#xff0c;以提供更好的用户体验&#xff0c;优化库存降低成本预测需求。 大数据开发做什么&#xff1f; 大数据开发分两类&#xff0c;编写Hadoop、Spa…

自然语言处理的多行业应用

在我们小时候&#xff0c;甚至是我们会走路或说话之前&#xff0c;就已经在察觉周围发出的声音了。我们倾听其他人发出的声响和声音。我们将声音组合成有意义的词语&#xff0c;例如“母亲”和“门”&#xff0c;并学习解读周围人的面部表情&#xff0c;以加深我们对词组的理解…

Linux 指令心法(四)`touch` 创建一个新的空文件

文章目录 命令的概述和用途命令的用法命令行选项和参数的详细说明命令的示例命令的注意事项或提示 命令的概述和用途 touch 是一个用于在 Linux 和 Unix 系统中创建空文件或更改现有文件的访问和修改时间的命令。如果指定的文件不存在&#xff0c;touch会创建一个新的空文件&a…

国产自主可控C++工业软件可视化图形架构源码

关于国产自主代替的问题是当前热点&#xff0c;尤其是工业软件领域。 “一个功能强大的全自主C跨平台图形可视化架构对开发自主可控工业基础软件至关重要&#xff01;” 作为全球领先的C工业基础图形可视化软件提供商&#xff0c;UCanCode软件有自己的思考&#xff0c;我们认…

linux C编程 获取系统时间

1.clock_gettime #include<time.h> int clock_gettime(clockid_t clk_id,struct timespec *tp); struct timespec {time_t tv_sec; /* 秒*/long tv_nsec; /* 纳秒*/ }clk_id : CLOCK_BOOTTIME&#xff0c;以系统启动时间为时间原点的时间体系&#xff0c;不受其它因素的…

青翼科技基于VITA57.1的16路数据收发处理平台产品手册

FMC211是一款基于VITA57.1标准规范的实现16路LVDS数据采集、1路光纤数据收发处理FMC子卡模块。 该板卡支持2路CVBS&#xff08;复合视频&#xff09;视频输入&#xff0c;能够自动检测标准的模拟基带电视信号&#xff0c;并将其转变为8位ITU-R.656接口信号或者4:2:2分量视频信…

Java 大厂八股文面试专题-设计模式 工厂方法模式、策略模式、责任链模式

面试专题-设计模式 前言 在平时的开发中&#xff0c;涉及到设计模式的有两块内容&#xff0c;第一个是我们平时使用的框架&#xff08;比如spring、mybatis等&#xff09;&#xff0c;第二个是我们自己开发业务使用的设计模式。 面试官一般比较关心的是你在开发过程中&#xff…

Opencv-C++笔记 (18) : 轮廓和凸包

文章目录 一、轮廓findContours发现轮廓drawContours绘制轮廓代码 二.几何及特性概括——凸包(Convex Hull)凸包概念凸包扫描算法介绍——Graham扫描算法 相关API介绍程序示例轮廓集合及特性性概括——轮廓周围绘制矩形框和圆形相关理论介绍轮廓周围绘制矩形 -API绘制步骤程序实…

Java异常处理

Java内置了一套异常处理机制&#xff0c;总是使用异常来表示错误。一个健壮的程序必须处理各种各样的错误。所谓错误&#xff0c;就是程序调用某个函数的时候&#xff0c;如果失败了&#xff0c;就表示出错 异常是一种class&#xff0c;因此它本身带有类型信息。异常可以在任何…

【K8S系列】深入解析k8s网络插件—Cilium

序言 做一件事并不难&#xff0c;难的是在于坚持。坚持一下也不难&#xff0c;难的是坚持到底。 文章标记颜色说明&#xff1a; 黄色&#xff1a;重要标题红色&#xff1a;用来标记结论绿色&#xff1a;用来标记论点蓝色&#xff1a;用来标记论点 在现代容器化应用程序的世界中…

深入理解 JVM 之——Java 内存区域与溢出异常

更好的阅读体验 \huge{\color{red}{更好的阅读体验}} 更好的阅读体验 本篇为深入理解 Java 虚拟机第二章内容&#xff0c;推荐在学习前先掌握基础的 Linux 操作、编译原理、计算机组成原理等计算机基础以及扎实的 C/C 功底。 该系列的 GitHub 仓库&#xff1a;https://github…

Power View

界面 切换可视化效果 对于已经上传到透视表的数据&#xff0c;选择power view&#xff0c;形成表格后。

国标视频云服务EasyGBS国标视频平台迁移服务器后无法启动的问题解决方法

国标视频云服务EasyGBS支持设备/平台通过国标GB28181协议注册接入&#xff0c;并能实现视频的实时监控直播、录像、检索与回看、语音对讲、云存储、告警、平台级联等功能。平台部署简单、可拓展性强&#xff0c;支持将接入的视频流进行全终端、全平台分发&#xff0c;分发的视频…

RT-Thread 线程管理(二)

系统线程 系统线程是指由系统创建的线程&#xff0c;用户线程是由用户程序调用线程管理接口创建的线程&#xff0c;在 RT-Thread 内核中的系统线程有空闲线程和主线程。 空闲线程 空闲线程&#xff08;idle&#xff09;是系统创建的最低优先级的线程&#xff0c;线程状态永远…

【MySQL】基础语法总结

MySQL 基础语句 一、DDL 数据库定义语言 1.1CREATE 创建 1.1.1 创建数据库 语法结构 CREATE DATABASE database_name;示例 CREATE DATABASE demo;1.1.2 创建表 语法结构 CREATE TABLE 表名 (列1 数据类型,列2 数据类型,... );示例 CREATE TABLE new_user (id INT PRIMARY KE…

JVM解密: 解构类加载与GC垃圾回收机制

文章目录 一. JVM内存划分二. 类加载机制1. 类加载过程2. 双亲委派模型 三. GC垃圾回收机制1. 找到需要回收的内存1.1 哪些内存需要回收&#xff1f;1.2 基于引用计数找垃圾(Java不采取该方案)1.3 基于可达性分析找垃圾(Java采取方案) 2. 垃圾回收算法2.1 标记-清除算法2.2 标记…

云服务器利用Docker搭建sqli-labs靶场环境

一、安装宝塔面板 使用xshell、electerm、SecureCRT等远程终端连接登陆上云服务器&#xff0c;在Linux宝塔面板使用脚本安装 安装后&#xff0c;如下图&#xff1a;按照提示&#xff0c;在云服务器防火墙/安全组放行Linux宝塔面板的端口 在浏览器打开上述网址&#xff0c;登…