计算机视觉的应用13-基于SSD模型的城市道路积水识别的应用项目

大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用13-基于SSD模型的城市道路积水识别的应用项目。今年第11号台风“海葵”后部云团的影响,福州地区的降雨量突破了历史极值,多出地方存在严重的积水。城市道路积水是造成交通拥堵、车辆事故和城市排水系统过载的主要原因之一。因此,准确地识别城市道路上的积水情况对于城市交通管理和公共安全至关重要。本文基于SSD模型,提出了一种城市道路积水识别方法。
我们收集了大量城市道路积水的图像数据,并进行了标注。然后,我们利用深度学习技术,将这些图像数据输入到SSD模型中进行训练。通过优化损失函数,提高了模型在道路积水识别任务上的准确率。基于SSD模型的城市道路积水识别方法在实际应用中具有潜力,并能够为城市交通管理和公共安全提供有益的支持。
在这里插入图片描述

目录

  1. 项目背景与意义
  2. 训练数据样例
  3. SSD模型介绍
  4. 搭建SSD模型
  5. 模型训练与测试
  6. 代码实现
  7. 结论和未来工作

1. 项目背景与意义

随着城市化进程的加快,城市基础设施建设和维护的问题越来越突出,其中之一就是道路积水问题。当遇到台风与暴雨添加,持续性的降水就导致道路大面积积水,道路积水不仅影响交通,还可能引发交通事故,甚至对人的生命安全构成威胁。因此,及时有效地识别和处理道路积水问题具有重要意义。
传统的道路积水识别方法主要依赖于人工巡查,效率低下,而且无法实时发现和处理问题。因此,我们需要一种自动化的、高效的道路积水识别方法。近年来,深度学习在图像识别领域取得了显著的成果。特别是SSD模型,因其出色的目标检测和识别能力,被广泛应用于各种图像识别任务中。
本项目提出了一种基于SSD模型的道路积水识别方法。我们将该方法应用于道路图像,实现了高效准确的道路积水识别。

2. 训练数据样例

为了训练我们的模型,我们收集了大量的道路图像,其中包括有积水和没有积水的图像。每个图像都进行了标注,标注出图像中的积水区域。

以下是我们的一些训练数据样例:

Image1.jpg, "water", 14, 30, 56, 70
Image2.jpg, "water", 35, 50, 66, 90
Image3.jpg, "no_water", 0, 0, 0, 0
...

在上述数据中,每行代表一张图像。第一列是图像名称,第二列是图像的标签("water"表示有积水,"no_water"表示没有积水),第三到第六列是积水区域的边界框坐标。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3. SSD模型介绍

SSD模型是一种深度学习的目标检测模型。与其他目标检测模型相比,SSD模型具有更高的检测速度和更好的检测效果。

SSD模型的主要特点是使用了多尺度的特征图来检测目标,并且在每个特征图上都使用了多种尺度和长宽比的默认边界框(default box)来预测目标。

SSD模型的训练主要包括两个部分:一部分是对默认边界框的位置进行回归,调整其与真实边界框的匹配程度;另一部分是对每个默认边界框进行分类,确定其是否包含目标。

SSD模型的原理:
1.特征提取:
SSD模型使用一个预训练的CNN作为基础网络,通常是VGGNet或ResNet等。给定输入图像 x x x,通过该基础网络可以得到一系列特征图(feature maps)。这些特征图包含了不同层次的语义信息,其中低层次特征图包含局部和细节信息,高层次特征图则包含更多的语义和上下文信息。
2. 多尺度特征图生成:
SSD模型在基础网络的不同层次上添加了额外的卷积层,以生成不同尺度的特征图。这些额外的卷积层被称为辅助卷积层(auxiliary convolutional layers)。每个辅助卷积层都会生成一组特征图,每个特征图对应一个固定的默认框。由于不同层次的特征图具有不同的感受野(receptive field),因此可以在不同尺度下检测目标。
3. 目标分类和定位:
对于每个默认框,SSD模型预测目标的类别概率以及边界框的位置。具体地,每个默认框会通过一系列卷积层和全连接层得到一个固定维度的特征表示,然后分别用于分类和回归任务。分类任务使用softmax函数计算每个类别的概率,回归任务则预测边界框的位置和大小。
4. 损失函数:
SSD模型采用了多任务损失函数来训练模型。该损失函数由两个部分组成:分类损失和定位损失。分类损失使用交叉熵损失函数来度量目标类别的预测误差,定位损失使用平滑L1损失函数来度量边界框位置的预测误差。最终的总损失是分类损失和定位损失的线性加权和。

通过对大规模标记的训练数据进行优化,SSD模型可以学习到有效的特征表示和目标检测能力。该模型在目标检测任务中具有良好的性能和实时性能。

SSD模型数学原理表达式:

  1. 特征提取:
    f = CNN ( x ) f = \text{{CNN}}(x) f=CNN(x)

  2. 多尺度特征图生成:
    d k = Conv k ( f ) d_k = \text{{Conv}}_k(f) dk=Convk(f)

  3. 目标分类和定位:
    p i , k = softmax ( c i , k ) p_{i,k} = \text{{softmax}}(c_{i,k}) pi,k=softmax(ci,k)
    b i , k = decode ( d i , k ) b_{i,k} = \text{{decode}}(d_{i,k}) bi,k=decode(di,k)

  4. 损失函数:
    L = λ cls L cls + λ loc L loc L = \lambda_{\text{{cls}}}L_{\text{{cls}}} + \lambda_{\text{{loc}}}L_{\text{{loc}}} L=λclsLcls+λlocLloc

其中, f f f表示特征图, d k d_k dk表示第 k k k个辅助卷积层的特征图, p i , k p_{i,k} pi,k表示第 i i i个默认框的类别概率, b i , k b_{i,k} bi,k表示第 i i i个默认框的边界框位置, L cls L_{\text{{cls}}} Lcls表示分类损失, L loc L_{\text{{loc}}} Lloc表示定位损失, λ cls \lambda_{\text{{cls}}} λcls λ loc \lambda_{\text{{loc}}} λloc为损失的权重。

4. 搭建SSD模型

在PyTorch框架下,我们可以方便地搭建SSD模型。以下是我们搭建SSD模型的代码:

import torch
from torch import nn
from ssd.modeling import registry
from .backbone import build_backbone
from .box_head import build_box_head@registry.DETECTORS.register('SSD')
class SSD(nn.Module):def __init__(self, cfg):super(SSD, self).__init__()self.backbone = build_backbone(cfg)self.box_head = build_box_head(cfg)def forward(self, images, targets=None):features = self.backbone(images)detections, detector_losses = self.box_head(features, targets)if self.training:return detector_lossesreturn detections

在上述代码中,我们首先定义了一个SSD类,该类继承自nn.Module。在SSD类的构造函数中,我们构造了backbone和box_head两个部分。backbone部分用于提取图像的特征,box_head部分用于从特征中检测目标。在SSD类的forward函数中,我们首先通过backbone提取了图像的特征,然后通过box_head从特征中检测出目标。如果是训练阶段,我们返回检测的损失;如果是测试阶段,我们返回检测的结果。

5. 模型训练与测试

模型的训练包括以下步骤:

1.读取训练数据
2. 将图像传入模型,得到检测的损失
3. 使用优化器优化损失,更新模型的参数
4. 重复以上步骤,直到模型的性能达到满意的程度

模型的测试包括以下步骤:

1.读取测试数据
2. 将图像传入模型,得到检测的结果
3. 与真实的结果进行比较,计算模型的性能指标
4. 重复以上步骤,对所有测试数据进行测试

6. 代码实现

我们模型训练和测试的代码实现:

import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from dataset import WaterDataset
from model import SSD
from loss import SSDLoss# 读取数据
dataset = WaterDataset('data/train.csv')
data_loader = DataLoader(dataset, batch_size=32, shuffle=True)# 构建模型
model = SSD()
model = model.to('cuda')# 定义损失函数和优化器
criterion = SSDLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
for epoch in range(100):for images, targets in data_loader:images = images.to('cuda')targets = targets.to('cuda')# 前向传播loss = model(images, targets)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()# 测试模型
model.eval()
with torch.no_grad():correct = 0total = 0for images, targets in data_loader:images = images.to('cuda')targets = targets.to('cuda')# 前向传播outputs = model(images)# 计算准确率total += targets.size(0)correct += (outputs == targets).sum().item()print('Test Accuracy: {}%'.format(100 * correct / total))

7. 结论和未来工作

本项目提出了一种基于SSD模型的道路积水识别方法,通过对大量道路图像的训练,实现了高效准确的道路积水识别。然而,我们的方法还有一些局限性。例如,我们的方法依赖于高质量的训练数据,而这些数据的获取和标注是一个耗时且困难的过程。此外,我们的方法在处理复杂场景(如雨天、夜晚等)的积水识别时,可能会有一些困难。

后续我们将进一步优化我们的模型,提高其在复杂场景下的积水识别能力。我们还计划收集和标注更多的训练数据,以提高我们模型的泛化能力。同时,我们还将探索其他的深度学习模型,以提高我们的积水识别效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/123676.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端基础5——UI框架Layui

文章目录 一、基本使用二、管理后台布局2.1 导航栏2.2 主题颜色2.3 字体图标 三、栅格系统四、卡片面板五、面包屑六、按钮七、表单八、上传文件九、数据表格9.1 table模块常用参数9.2 创建表格9.3 表格分页9.4 表格工具栏9.5 表格查询9.5.1 搜索关键字查询9.5.2 选择框查询 9.…

微信“刷掌支付”上线!出门带手就可以了~

从2023年9月5日起,微信支付联合广东7-Eleven便利店正式发布了刷掌支付服务。用户可以在收银台结账时选择刷掌支付作为支付方式。这是全国首批支持微信刷掌支付的便利店,也是刷掌支付在广州地区的首次社会面应用。 目前,广东地区已经有超过150…

【JUC系列-04】精通Synchronized底层的实现原理

JUC系列整体栏目 内容链接地址【一】深入理解JMM内存模型的底层实现原理https://zhenghuisheng.blog.csdn.net/article/details/132400429【二】深入理解CAS底层原理和基本使用https://blog.csdn.net/zhenghuishengq/article/details/132478786【三】熟练掌握Atomic原子系列基本…

如何将 PDF 转换为 Word:前 5 个应用程序

必须将 PDF 转换为 Word 才能对其进行编辑和自定义。所以这里有 5 种很棒的方法 PDF 文件被广泛使用,因为它非常稳定且难以更改。这在处理法律合同、财务文件和推荐信等重要文件时尤其重要。但是,有时您可能需要编辑 PDF 文件。最好的方法是使用应用程序…

NLP(1)--NLP基础与自注意力机制

目录 一、词向量 1、概述 2、向量表示 二、词向量离散表示 1、one-hot 2、Bag of words 3、TF-IDF表示 4、Bi-gram和N-gram 三、词向量分布式表示 1、Skip-Gram表示 2、CBOW表示 四、RNN 五、Seq2Seq 六、自注意力机制 1、注意力机制和自注意力机制 2、单个输出…

Windows Server 系统各版本及授权说明(附下载地址

本文为Windows Server系统各版本差异对比及授权说明。 会对相关目前仍主流使用的相关Windows Server系统版本和相关授权进行对比和功能说明。 WindowsServer2012 R2 Windows Server 2012 R2授权方式是按照物理CPU数量进行授权,比如物理服务器CPU插槽数量2&#xff…

ChatGPT新增超强插件:文本直接生成视频、海报,支持自定义修改!

全球著名在线设计平台Canva,在ChatGPT Plus(GPT-4)上推出了插件功能,用户通过文本提示,几秒钟就能生成演示文稿、PPT插图、电子书封面、宴会邀请函等各种精美设计海报,同时支持生成视频。 该插件最强大的功…

《机器人学一(Robotics(1))》_台大林沛群 第 4 周【机械臂 逆运动学】 Quiz 4

待完善: 第5-7【暂时不清楚如何确定】 谁做出来了,麻烦指下路,谢谢! 第6-7: 连猜带蒙🤣 #################################################### 整个流程 走下来,只剩一个解了 不理解 第5-…

【力扣每日一题05】数组篇--加一

一、题目 给定一个由 整数 组成的 非空 数组所表示的非负整数,在该数的基础上加一。 最高位数字存放在数组的首位, 数组中每个元素只存储单个数字。 你可以假设除了整数 0 之外,这个整数不会以零开头。 示例 1: 输入&#xff1…

【HTML专栏3】!DOCTYPE、lang、字符集的作用

本文属于HTML/CSS专栏文章,适合WEB前端开发入门学习,详细介绍HTML/CSS如果使用,如果对你有所帮助请一键三连支持,对博主系列文章感兴趣点击下方专栏了解详细。 博客主页:Duck Bro 博客主页系列专栏:HTML/CS…

nginx请求接口转发-浏览器访问80端口,要把请求转发至8882

1、需求 浏览器访问80端口,要把请求转发至8882 2、实现 修改ngixn配置文件 ngin配置文件在nginx安装目录/nginx/conf文件夹下 cd /usr/local/nginx/confvi ngin.conf修改server配置 server {listen 80;server_name localhost;location / {proxy_pass …

怎么做手机App测试?app测试详细流程和方法介绍

APP测试 1、手机APP测试怎么做? 手机APP测试,主要针对的是android和ios两大主流操作系统,主要考虑的就是功能性、兼容性、稳定性、易用性(也就是人机交互)、性能。 手机APP测试前的准备: 1.使用同类型的…

docker容器运行成功但无法访问,原因分析及对应解决方案(最新,以Tomcat为例,亲测有效)

原因分析: 是否能访问当运行docker容器虚拟机(主机)地址 虚拟机对应的端口号是否开启或者防墙是否关闭 端口映射是否正确(这个是我遇到的) tomcat下载的是最新版,docker运行后里面是没有东西的&am…

Json“牵手”阿里巴巴商品详情数据方法,阿里巴巴商品详情API接口,阿里巴巴API申请指南

阿里巴巴平台是全球领先的网上B2B交易市场。阿里巴巴(B2B.com)是全球国际贸易领域内最大、最活跃的网上交易市场和商人社区。它拥有来自200余个国家和地区超过360万的注册用户,阿里巴巴中国站在中国地区拥有超过2100万的注册用户。 阿里巴巴…

【笔试强训选择题】Day35.习题(错题)解析

作者简介:大家好,我是未央; 博客首页:未央.303 系列专栏:笔试强训选择题 每日一句:人的一生,可以有所作为的时机只有一次,那就是现在!! 文章目录 前言 一、Da…

Openvslam

文章目录 Openvslam 学习报告什么是Openvslam概念特点 安装和运行OpenVSLAM克隆源代码安装依赖库测试(环境已经安装成功)运行运行失败的总结运行成功 系统设计模块和函数接口调用流程流程图参考资料 Openvslam 学习报告 什么是Openvslam 概念 OpenVSL…

QT 初识多线程

1.QThread线程基础 QThread是Qt线程中有一个公共的抽象类,所有的线程类都是从QThread抽象类中派生的,需要实现QThread中的虚函数run(),通过start()函数来调用run函数。 void run()函数是线程体函数,用于定义线程的功能…

SW的stp文件转成CAD格式文件学习笔记

SW的stp文件转成CAD格式文件 如图一个STP文件,右上角标注是什么文件呢 另存为零件图,即另存为part 如图所示 用solidworks打开另存为的零件图,点击是,会识别特征 . 直接默认点对勾 之后会出现可编辑的零件图 另存为CA…

文件上传漏洞-upload靶场13-16关 (图片木马-文件包含与文件上次漏洞)

文件上传漏洞-upload靶场13-16关 (图片木马-文件包含与文件上次漏洞) 简介 upload靶场到了第十三关,难度就直线上升了,在最后这7关中,包含了图片木马、竞争条件等上传技巧,这些漏洞的本质,都是…

如何修复老照片?老照片修复翻新的方法

老旧照片,尤其是黑白照片,往往因为年代久远、保存方式不当等原因而出现褪色、污损、划痕等问题,会比较难以修复,就算是技术精湛的专业修复师,也是需要投入极大时间精力的,效果也是不可预料的。 修复老照片…