【2023高教社杯】C题 蔬菜类商品的自动定价与补货决策 问题分析、数学模型及python代码实现

【2023高教社杯】C题 蔬菜类商品的自动定价与补货决策

在这里插入图片描述

1 题目

C题蔬菜类商品的自动定价与补货决策

在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差, 大部分品种如当日未售出,隔日就无法再售。因此,商超通常会根据各商品的历史销售和需求情况每天进行补货。

由于商超销售的蔬菜品种众多、产地不尽相同,而蔬菜的进货交易时间通常在凌晨 3:00- 4:00,为此商家须在不确切知道具体单品和进货价格的情况下,做出当日各蔬菜品类的补货决策。蔬菜的定价一般采用“成本加成定价”方法,商超对运损和品相变差的商品通常进行打折销售。可靠的市场需求分析,对补货决策和定价决策尤为重要。从需求侧来看,蔬菜类商品的销售量与时间往往存在一定的关联关系;从供给侧来看,蔬菜的供应品种在 4 月至 10 月较为丰富,商超销售空间的限制使得合理的销售组合变得极为重要。

附件 1 给出了某商超经销的 6 个蔬菜品类的商品信息;附件 2 和附件 3 分别给出了该商超 2020 年 7 月 1 日至 2023 年 6 月 30 日各商品的销售流水明细与批发价格的相关数据;附件 4 给出了各商品近期的损耗率数据。请根据附件和实际情况建立数学模型解决以下问题:

问题 1 蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各品类及单品销售量的分布规律及相互关系。

问题 2 考虑商超以品类为单位做补货计划,请分析各蔬菜品类的销售总量与成本加成定价的关系,并给出各蔬菜品类未来一周(2023 年 7 月 1-7 日)的日补货总量和定价策略, 使得商超收益最大。

问题 3 因蔬菜类商品的销售空间有限,商超希望进一步制定单品的补货计划,要求可售单品总数控制在 27-33 个,且各单品订购量满足最小陈列量 2.5 千克的要求。根据 2023年 6 月 24-30 日的可售品种,给出 7 月 1 日的单品补货量和定价策略,在尽量满足市场对各品类蔬菜商品需求的前提下,使得商超收益最大。

问题 4 为了更好地制定蔬菜商品的补货和定价决策,商超还需要采集哪些相关数据,这些数据对解决上述问题有何帮助,请给出你们的意见和理由。

附件 1:6 个蔬菜品类的商品信息
附件 2:销售流水明细数据
附件 3:蔬菜类商品的批发价格
附件 4:蔬菜类商品的近期损耗率
(1) 附件 1 中,部分单品名称包含的数字编号表示不同的供应来源。
(2) 附件 4 中的损耗率反映了近期商品的损耗情况,通过近期盘点周期的数据计算得到。

2 问题分析

2.1 问题一

分析每个蔬菜品类和单品的销售量分布规律,可以使用可视化工具展示销售量的直方图和箱线图,观察销售量的分布情况和异常值情况。然后,计算相关系数法分析蔬菜类商品之间的销售量相关性,以及不同品类或不同单品之间可能存在的销售量关联关系。

2.2 问题二

线性规划问题。首先,需要根据附件2的销售流水明细计算出各蔬菜品类的销售总量。具体来说,对于每个蔬菜品类 i i i,其销售总量 S i S_i Si 可以通过对其子类,即分类编码为包含品类编码的前 8 位数字的销售总量求和得到,即

S i = ∑ j ∈ C i s j S_i = \sum_{j \in C_i} s_j Si=jCisj

其中, C i C_i Ci 表示蔬菜品类 i i i 所包含的子类集合, s j s_j sj 表示子类 j j j 的销售总量。

接下来,需要计算每个蔬菜品类的成本加成定价。假设蔬菜品类 i i i 的成本为 c i c_i ci,加成率为 m i m_i mi,则成本加成定价为
p i = ( 1 + m i ) c i p_i = (1 + m_i) c_i pi=(1+mi)ci

需要根据附件3的批发价格数据来计算成本和利润。对于每个蔬菜品类 i i i,其成本 c i c_i ci 可以通过对其子类的平均批发价格求和得到,即

c i = ∑ j ∈ C i w j p j ∑ j ∈ C i w j c_i = \dfrac{\sum_{j \in C_i} w_j p_j}{\sum_{j \in C_i} w_j} ci=jCiwjjCiwjpj

其中, w j w_j wj 表示子类 j j j 的批发数量, p j p_j pj 表示子类 j j j 的平均批发价格。

接下来,需要根据附件4的损耗率数据来计算每个蔬菜品类的损耗成本。具体来说,假设蔬菜品类 i i i 的损耗率为 r i r_i ri,则其损耗成本 l i l_i li 可以通过对其子类的销售总量和批发价格求加权平均再乘以损耗率得到,即

l i = ∑ j ∈ C i s j w j p j ∑ j ∈ C i s j w j × r i l_i = \dfrac{\sum_{j \in C_i} s_j w_j p_j}{\sum_{j \in C_i} s_j w_j} \times r_i li=jCisjwjjCisjwjpj×ri

最后,需要根据题目要求,设计一个数学模型,计算出未来一周每个蔬菜品类的日补货总量和定价策略,使得商超收益最大。

请下载完整资料

2.3 问题三

在问题二模型的基础上,需要考虑进一步制定单品的补货计划的问题,即需要限制每个蔬菜品类的可售单品总数控制在 27-33 个,且各单品订购量满足最小陈列量 2.5 千克的要求。将其转为整数规划问题。改进的主要包括两个地方:

(1)添加约束条件,限制每个蔬菜品类的可售单品总数不超过 33 个,同时除最后一天外,每天需补货的种类数也不超过 33 个。

(2)将原优化问题拆分为 7 天的子问题,在满足第一步限制条件的前提下,求解出每天的最优补货量和售价。

数学模型如下:

请下载完整资料

其中第一个约束限制了每个蔬菜品类在每天的日补货总量不超过其最大日补货量。
第二个约束限制了除最后一天外,每天需补货的种类数不超过 33 个。
第三个约束限制了最后一天无需补货。
第四个约束限制了补货量和售价必须为整数。

2.4 问题四

商品交易是买卖双方的事情,尽可能的采集买卖双方的数据,就能实现客户定制化,卖家合理化的销售方案。

(1)顾客信息:购买偏好以及消费者的人口统计信息,如年龄、性别、职业、月收入等,分析市场需求和制定适合不同消费者群体的销售组合和定价策略。

(2)商品信息:商品的产地、采购时间、采购批次等信息,分析不同季节的采购价格、采购成本及商品质量。

3 python代码

3.1 问题一

读取数据

import pandas as pd
import numpy as np
import warnings
import matplotlib.pyplot as plt 
import seaborn as sns 
import scipy.stats as st
%matplotlib  inline
warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = 'SimSun' # 换成自己环境下的中文字体,比如'SimHei'
plt.style.use('seaborn-darkgrid')
sns.set(style = 'darkgrid')# 使用分类编码和单品编码进行合并
item_info = pd.read_excel('data/附件1.xlsx')
item_info = item_info.fillna(method='ffill')
item_info['单品编码'] = item_info['单品编码'].astype('str')
item_info['分类编码'] = item_info['分类编码'].astype('str')
item_info['分类-单品编码'] = item_info['分类编码'] + '-' + item_info['单品编码']# 计算出每个商品的销售总量、销售总额等信息
sales_details = pd.read_excel('data/附件2.xlsx')
sales_details['单品编码'] = sales_details['单品编码'].astype('str')
sales_details = sales_details[['销售日期', '单品编码', '销量(千克)', '销售单价(元/千克)']]
sales_details['销售额(元)'] = sales_details['销量(千克)'] * sales_details['销售单价(元/千克)']
sales_by_item = sales_details.groupby('单品编码').agg({'销量(千克)': 'sum', '销售额(元)': 'sum'}).reset_index()# 计算出每个商品的平均批发价格、总批发额等信息
wholesale_price = pd.read_excel('data/附件3.xlsx')
wholesale_price
wholesale_price['单品编码'] = wholesale_price['单品编码'].astype('str')
wholesale_by_item = wholesale_price.groupby('单品编码').agg({'批发价格(元/千克)': 'mean'}).reset_index()
wholesale_by_item.columns = ['单品编码', '平均批发价格(元/千克)']
wholesale_by_item['总批发额(元)'] = wholesale_by_item['平均批发价格(元/千克)'] * sales_by_item['销量(千克)']# 与商品信息合并,得到每个商品的损耗率
loss_rate = pd.read_excel('data/附件4.xlsx')
loss_rate
loss_rate['小分类编码'] = loss_rate['小分类编码'].astype('str')
item_info['单品编码'] = item_info['单品编码'].astype('str')
item_loss_rate = pd.merge(item_info, loss_rate, left_on='分类编码', right_on='小分类编码', how='left')

(1)分析每个蔬菜品类和单品的销售量分布规律,使用直方图和箱线图展示销售量的分布情况,

# 统计根茎类不同单品的销售量
sales_by_item = sales_details.merge(item_info, on='单品编码', how='left')
sales_by_item = sales_by_item.groupby(['分类名称', '单品名称']).agg({'销量(千克)': 'sum'}).reset_index()# 绘制直方图展示销售量分布情况
sales_by_item[sales_by_item['分类名称'] == '根茎类'].sort_values('销量(千克)', ascending=False).plot(kind='bar', x='单品名称', y='销量(千克)',figsize=(10, 6))
plt.title('根茎类销售量直方图')
plt.xlabel('单品名称')
plt.ylabel('销量(千克)')
plt.show()# 绘制箱线图展示销售量分布情况
sales_by_item.boxplot(column='销量(千克)', by='分类名称', figsize=(10, 6))
plt.title('各品类销售量箱线图')
plt.xlabel('品类名称')
plt.ylabel('销量(千克)')
plt.show()

在这里插入图片描述
在这里插入图片描述

(2)分析蔬菜类商品之间的销售量相关性,使用相关系数矩阵和热力图来分析不同蔬菜类商品之间的销售量相关性

# 将销售流水明细和商品信息合并,得到分类-单品编码和销售量的对应关系
sales_by_category = sales_details.merge(item_info, on='单品编码', how='left')
# 只取了20个进行可视化分析
sales_by_category = sales_by_category[0:20]
sales_matrix = sales_by_category.pivot(columns='分类-单品编码', values='销量(千克)')
corr_matrix = sales_matrix.corr()plt.figure(figsize=(10, 8))
plt.imshow(corr_matrix, cmap=plt.cm.Reds_r)
plt.xticks(range(len(corr_matrix.columns)), corr_matrix.columns, rotation=90)
plt.yticks(range(len(corr_matrix.columns)), corr_matrix.columns)
plt.colorbar()
plt.title('销售量相关系数热力图')
plt.savefig('3.png',dpi=300)
plt.show()

(3)分析不同品类或不同单品之间可能存在的销售量关联关系,使用散点图来展示不同品类或不同单品之间可能存在的销售量关联关系

# 将销售流水明细和商品信息合并,得到分类名称和销售量的对应关系
sales_by_category = sales_details.merge(item_info, on='单品编码', how='left')
sales_by_category = sales_by_category.groupby('分类名称').agg({'销量(千克)': 'sum'}).reset_index()# 绘制散点图展示不同品类之间的销售量关联情况
categories = list(set(item_info['分类名称']))
fig, ax = plt.subplots(figsize=(10, 6))
for c in categories:if c != '其他':ax.scatter(sales_by_category[sales_by_category['分类名称'] == c]['销量(千克)'], sales_by_category[sales_by_category['分类名称'] == c].index,label=c)
plt.legend()
plt.ylabel('分类名称')
plt.xlabel('销售量(千克)')
plt.title('不同品类间销售量关联情况')
plt.show()

在这里插入图片描述

3.2 问题二、三

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/125699.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

js函数变量提升理解

var n 10function fn() {// var n 20function f() {// 没用var声明,去外层寻找n,直到找到windows为止,找到的话用的就是哟个全局变量,会改变原始全局变量的值n;console.log(n)}var nn 20f()console.log(n);return f}var x fn()// 会在上一…

爱胜品YPS-1133DN系列打印机网络驱动安装的一点小经验

爱胜品YPS-1133DN打印机基本参数: 项目 详细参数 品牌 ICSP爱胜品 外观配色 上灰下白经典实用设计 打印速度 33ppm(A4)、35ppm(Letter)、58ppm(A5) 首页打印时间 ≤8秒 最大月打印量 …

Zebec Protocol 成非洲利比亚展会合作伙伴,并将向第三世界国家布局

在 9 月 6 日,The Digital Asset Summit ’23(利比亚大会)在尼日利亚首度阿布贾的 NAF 会议中心举办,该会议对 Web3 领域在非洲地区的发展进行了探索,旨在推动非洲地区区块链产业的进一步发展,据悉该会议室…

华为Mate 60和iPhone 15选哪个?

最近也有很多朋友问我这个问题来着,首先两款手机定位都是高端机,性能和体验各有千秋,各自有自己的铁杆粉。 但是让人意想不到的是华为mate60近日在海外越来越受欢迎和追捧,甚至是引起了不少人的抢购,外观设计和…

音视频会议需要哪些设备配置

音视频会议需要哪些设备配置?音视频会议需要:视频会议摄像头、麦克风、扬声器、显示设备、网络连接设备、视频会议服务器、视频会议软件等。 1. 视频会议摄像头:用于捕捉与传输视频图像,可以选择高清摄像头,提供更出色…

Vue生成多文件pdf准考证

这是渲染的数据 这是生成的pdf文件,直接可以打印 需要安装和npm依赖和引入封装的pdf.js文件 npm install --save html2canvas // 页面转图片 npm install jspdf --save // 图片转pdfpdf.js文件 import html2canvas from "html2canvas"; import jsPDF …

DTCC 2023丨云原生环境下,需要什么样的 ETL 方案?

​2023年8月16日~18日,第14届中国数据库技术大会(DTCC 2023)于北京隆重召开,拓数派受邀参与本次大会,PieCloudDB 技术专家邱培峰在大会做了《云原生虚拟数仓 PieCloudDB ETL 方案设计与实现》的主题演讲,详…

华为云云耀云服务器L实例评测|使用Linux系统与Docker部署.net/c#项目

目录 前言 如何在CentOS运行项目 登录CentOS 使用Rider打包 使用Visual Studio打包 项目运行 后台运行 开放端口 如何在Docker中运行项目 项目运行 前言 本章详细介绍,.net Core项目从打包到部署上华为云云耀云服务器L实例的过程与一些细节问题。在这里…

大数据技术之Hadoop:MapReduce与Yarn概述(六)

目录 一、分布式计算 二、分布式资源调度 2.1 什么是分布式资源调度 2.2 yarn的架构 2.2.1 核心架构 2.2.2 辅助架构 前面我们提到了Hadoop的三大核心功能:分布式存储、分布式计算和资源调度,分别由Hadoop的三大核心组件可以担任。 即HDFS是分布式…

使用 Sealos 在离线环境中光速安装 K8s 集群

作者:尹珉。Sealos 开源社区 Ambassador,云原生爱好者。 当容器化交付遇上离线环境 在当今快节奏的软件交付环境中,容器化交付已经成为许多企业选择的首选技术手段。在可以访问公网的环境下,容器化交付不仅能够提高软件开发和交付…

国标EHOME视频平台EasyCVR视频融合平台助力地下停车场安全

EasyCVR能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,实现视频资源的鉴权管理、按需调阅、全网分发、云存储、智能分析等,视频智能分析平台EasyCVR融合性强、开放度高、部署轻快,在智慧工地、智慧园区…

[keil] uv编译分析

假设Keil安装路径: C:\Keil_v5\ 假设工程在 d:\HELLO , 工程Targets名:Simulator [在Manage Project Items中可修改] 如下指令为:Build(F7) C:\Keil_v5\UV4\UV4.exe -b d:\HELLO\Hello.uvproj -j0 -t Simulator -o d:\HELLO\uv4.log 如下指令为:Rebuild(CtrlAltF7) C:\Kei…

乐鑫 ESP-Mesh-Lite:轻松覆盖更大范围,连接更多设备

乐鑫科技 (688018.SH) 基于 Wi-Fi 协议推出了 Mesh 组网方案 ESP-Mesh-Lite,支持更多设备在更大范围内轻松联网。这一创新性的 Wi-Fi Mesh 技术通过构建灵活、可靠的物联网组网方案,使用户可以享受到快速、稳定且安全的 Wi-Fi 覆盖,不再受到设…

Matlab 如何选择窗函数和 FFT 的长度

Matlab 如何选择窗函数和 FFT 的长度 1、常用的四种窗函数 对于实际信号序列,如何选取窗函数呢?一般来说,选择第一旁瓣衰减大,旁瓣峰值衰减快的窗函数有利于緩解截断过程中产生的頻泄漏问题。但具有这两个特性的窗函数&#xff0…

Xshell只能打开一个会话、左边栏消失不见、高级设置在哪儿、快捷键设置解决

Xshell只能打开一个会话、左边会话栏消失不见、高级设置在哪儿解决 1.问题: xshell会话(窗口)上方切换栏不见了的处理办法 解决方法:ctrl shift t 2.问题: 左边会话管理器不见了 解决方法: 3.问题…

jenkins创建用户

一.背景 之前用了很多次,现在转到甲方爸爸的岗位,要培养大学毕业生,才发现好记性不如烂笔头。给年轻人写出来。 二.创建用户的过程 1.用户管理界面入口 Dashboard>Manage Jenkins>Jenkins own user database 2.点击右边的按钮“Cre…

Docker部署pyspider webui显示页面太小的解决方法

进入docker容器,输入以下指令来获取pyspider的位置 python -c "import pyspider;print(pyspider)"如图所示 然后进入到 /opt/pyspider/pyspider/webui/static 修改debug.min.css vi debug.min.css使用vi的查找命令,然后回车。即可找到该样…

OPPO/真我手机ColorOS13系统解账户锁-移除手机密码图案锁方法

在搞机之前,请确定自己的手机不是非法获取,本文只讲叙ColorOS13系统解锁方法,仅为个人测试研究出来的经验,未对官方系统进行任何修改。只推荐专业维修师傅从维修的角度进行解锁,不推荐个人用户对非自己的手机进行非法破…

CSS整理

目录 CSS中的& 弹性(display:flex)布局 flex的属性 justify-content align-items flex:1 flex属性 flex-grow:项目的放大比例 flex-shrink:收缩 flex-basis:初始值,项目占据的主轴空间&…

Jmeter系列-阶梯加压线程组Stepping Thread Group详解(6)

前言 tepping Thread Group是第一个自定义线程组但,随着版本的迭代,已经有更好的线程组代替Stepping Thread Group了【Concurrency Thread Group】,所以说Stepping Thread Group已经是过去式了,但还是介绍一下 Stepping Thread …