深度学习入门教学——卷积神经网络CNN

一、CNN简介

1、应用领域

  • 检测任务
  • 分类与检索
  • 超分辨率重构

2、卷积网络与传统网咯的区别

  • 传统神经网络和卷积神经网络都是用来提取特征的。
  • 神经网络:
    • 可以将其看作是一个二维的。
  • 卷积神经网络:
    • 可以将其看作是一个三维的。

 3、整体框架

二、输入层

  • 该层主要是对原始图像数据进行预处理,保留了图片本身的结构。
  • 对于黑白的32×32的图片,CNN的输入是一个32*32的二维神经元;对于RGB格式的28×28 图片,CNN的输入则是一个32*32*3的三维神经元。
  • 三维包括宽度、高度和深度。
  • 深度可以看作是不同的颜色通道,例如:RGB,可拆分为R、G、B三个通道。

三、卷积层

1、卷积的任务

  • 卷积的任务,就是将图像分成若干区域,然后计算每个区域的特征值。
  • 例如:
    • 将图像分割为5*5*3个小块,每3*3*3个小块矩阵看作是一个区域,从每个区域中提取一个特征。(上图只演示了一个通道)
    • 区域的数据:,区域的权重参数矩阵:,特征图:

2、卷积特征值计算方法

2.1、图像颜色通道

  • 计算特征值的过程中,让每个通道都要做计算,然后将每个通道的结果加在一起。

2.2、特征值计算过程

  • ,每一个通道会有一个权重参数矩阵,方法是计算它们的内积,3个通道的计算结果之和加上偏移值(b0=1),即为最终特征值。
  • 【注】上图中的三个权重参数矩阵,统称为卷积核。
  • 例如:
  • 最终结果:
    • (0+2+0)+b=3(b为偏置值,已知为1)

3、特征图表示

  • 特征图可以不唯一,下图中就有两个特征图。
  • 主要原因是,卷积核可以不唯一(使用不同的方法进行特征提取),这样的话就会计算出多个特征图来,如下图。
  • 【注】有几个卷积核就有几个特征图;卷积核中权重参数矩阵的个数与输入的通道个数相同。
  • 计算特征图时,每个区域平移了两个单元格(可自行定义)即步长为2,如下图。

4、步长与卷积核大小对结果的影响

4.1、堆叠的卷积层

  • 由下图可知,在分类图像的过程中,做了很多次卷积。
  • 多次卷积并不是对一张图片从粗到细地多次计算特征,而是从所得到特征图的基础上去做卷积,如下图。

4.2、卷积层涉及参数

4.2.1、滑动窗口步长
  • 步长为1的卷积
  • 步长为2的卷积
  • 步长越小,得到的特征越丰富,但计算效率越慢。
4.2.2、卷积核尺寸
  • 卷积核尺寸即为卷积核中权重参数矩阵的维度。下图卷积核的尺寸即为3*3*3。
  • ,也可以4*4*3,卷积核尺寸越小,得到的特征越丰富。
4.2.3、边缘填充
  • 一张图片在划分区域计算特征时,有些点会被重复利用,即会影响多个结果。例如下图划红线的区域,就会影响特征图中的两个值。
  • 边缘的点只会影响一个值,而靠近中心的点可能会影响多个值,这对边缘来说是不公平的。例如下图画圈的点,影响了特征图中的四个值。
  • 原始输入中,即为下图5*5紫色矩阵。在其边界加上一圈全0的值,这样的话,原本的边界就不再是边界了,一定程度上弥补了边界信息缺失的问题。
  • ,添加0对最终结果不会产生影响。
4.2.4、卷积核个数
  • 卷积核个数决定了最终得到的特征图个数。
  • 每个卷积核的数值是不同的。

5、特征图尺寸计算与参数共享

5.1、卷积结果计算公式

  • 长度:
  • 宽度:
  • 其中W1、H1表示输入的宽度、长度;W2、H2表示输出特征图的宽度、长度;F表示卷积核长和宽的大小;S表示滑动窗口的步长;P表示边界填充(加几圈0)。
  • 例如:

5.2、卷积参数共享

  • 图片中的每个区域,都是使用同一卷积核进行计算,然后得到一个特征图,即为参数共享。
  • 这样可以大量节省参数,例如:

四、池化层

1、池化层的作用

  • 池化层的作用是对得到的特征图进行压缩。
  • 下图就是对特征图的长、宽进行了压缩,而不是减少特征图的个数。

2、最大池化

  • 池化过程中,是选择某个区域中最大的特征值(值越大,越重要),如下图。

五、全连接层

  • 全连接层的作用:将得到的所有特征图整合起来,便于分类处理。
  • 全连接层把所有二维特征图转换为一个二维向量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/126617.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++多态案例2----制作饮品

#include<iostream> using namespace std;//制作饮品的大致流程都为&#xff1a; //煮水-----冲泡-----倒入杯中----加入辅料//本案例利用多态技术&#xff0c;提供抽象类制作饮品基类&#xff0c;提供子类制作茶叶和咖啡class AbstractDrinking {public://煮水//冲水//倒…

js摄像头动态检测

利用摄像头每一秒截图一次图像。然后计算2次图像之间的相似度。 如果相似度低于98%就会报警。 var video document.getElementsByClassName(inputvideo)[0]; video.innerHTML "<video classinput_video idcamera autoplay width640px height380px></video>…

自动驾驶——估计预瞄轨迹YawRate

1.Introduction 在ADAS控制系统中&#xff0c;通常根据预瞄距离x去估计横向距离y&#xff0c;有如下关系&#xff1a; y a0 a1 x a2 * x^2 a3 * x^3 &#xff0c;那么现在有个需求&#xff0c;希望根据上述x和y的关系&#xff0c;去估计规划预瞄轨迹yawRate 2.How to es…

【Linux】Qt Remote之Remote开发环境搭建填坑小记

总体思路 基于WSL2&#xff08;Ubuntu 22.04 LTS&#xff09;原子Alpha开发板进行Qt开发实验&#xff0c;基于Win11通过vscode remote到WSL2&#xff0c;再基于WSL2通过Qt 交叉编译&#xff0c;并通过sshrsync远程到开发板&#xff0c;构建起开发工具链。 Step1 基于Win11通过…

Macs Fan Control 1.5.16 Pro for mac风扇调节软件

Macs Fan Control是一款专门为 Mac 用户设计的软件&#xff0c;它可以帮助用户控制和监控 Mac 设备的风扇速度和温度。这款软件允许用户手动调整风扇速度&#xff0c;以提高设备的散热效果&#xff0c;减少过热造成的风险。 Macs Fan Control 可以在菜单栏上显示当前系统温度和…

容器编排学习(二)镜像制作和私有仓库介绍

一 Dockerfile 1 概述 commit的局限 很容易制作简单的镜像&#xff0c;但碰到复杂的情况就十分不方便例如碰到下面的情况需要设置默认的启动命令需要设置环境变量需要指定镜像开放某些特定的端口 Dockerfile就是解决这些问题的方法 Dockerfile是一种更强大的镜像制作方式…

如何基于国标GB28181视频平台EasyGBS国标云服务平台建设智慧环保在线监测系统

EasyGBS平台可提供流媒体接入、处理、转发等服务&#xff0c;支持内网、公网的安防视频监控设备通过国标GB/T28181协议进行视频监控直播。基于视频图像的环保监督管理智能监控系统&#xff0c;结合了计算机技术、AI、云计算、网络传输技术和网络存储技术等先进技术&#xff0c;…

数据分析面试题(2023.09.08)

数据分析流程 总体分为四层&#xff1a;需求层、数据层、分析层和结论层 一、统计学问题 1、贝叶斯公式复述并解释应用场景 公式&#xff1a;P(A|B) P(B|A)*P(A) / P(B)应用场景&#xff1a;如搜索query纠错&#xff0c;设A为正确的词&#xff0c;B为输入的词&#xff0c;那…

Hugging News #0904: 登陆 AWS Marketplace

每一周&#xff0c;我们的同事都会向社区的成员们发布一些关于 Hugging Face 相关的更新&#xff0c;包括我们的产品和平台更新、社区活动、学习资源和内容更新、开源库和模型更新等&#xff0c;我们将其称之为「Hugging News」。本期 Hugging News 有哪些有趣的消息&#xff0…

Pytorch从零开始实战01

Pytorch从零开始实战——MNIST手写数字识别 本系列来源于365天深度学习训练营 原作者K同学 文章目录 Pytorch从零开始实战——MNIST手写数字识别环境准备数据集模型选择模型训练可视化展示 环境准备 本系列基于Jupyter notebook&#xff0c;使用Python3.7.12&#xff0c;Py…

CH06_第一组重构(下)

封装变量&#xff08;Encapsulate Variable | 132&#xff09; 曾用名&#xff1a;自封装字段&#xff08;Self-Encapsulate Field&#xff09; 曾用名&#xff1a;封装字段&#xff08;Encapsulate Field&#xff09; let defaultOwner {firstName: "Martin", la…

用半天时间从零开始复习前端之html

目录 前言 科班生的标配&#xff1a;半天听完一门标记型语言 准备工作 webstorm2022 webstrom 第一个html页面 body h系列标签 行标签和块标签 列表标签 表格标签&#xff08;另起一篇&#xff09; 万能的input 1.快速生成多个标签 2.同时选中多个 前言 科班生的标…

系统报错“由于找不到msvcp140.dll无法继续执行代码”的处理方法

我在使用电脑时&#xff0c;突然发现了一个错误提示&#xff1a;“无法启动程序&#xff0c;因为找不到msvcp140.dll文件”。这让我非常困惑&#xff0c;因为我确定这个文件应该存在于我的电脑上。但是电脑依然报错“由于找不到msvcp140.dll无法继续执行代码”&#xff0c;这个…

【周末闲谈】如何利用AIGC为我们创造有利价值?

个人主页&#xff1a;【&#x1f60a;个人主页】 系列专栏&#xff1a;【❤️周末闲谈】 系列目录 ✨第一周 二进制VS三进制 ✨第二周 文心一言&#xff0c;模仿还是超越&#xff1f; ✨第二周 畅想AR 文章目录 系列目录前言AIGCAI写作AI绘画AI视频生成AI语音合成 前言 在此之…

Linux防火墙(iptables)

一、linux的防火墙组成 linux的防火墙由netfilter和iptables组成。用户空间的iptables制定防火墙规则&#xff0c;内核空间的netfilter实现防火墙功能。 netfilter&#xff08;内核空间&#xff09;位于Linux内核中的包过滤防火墙功能体系&#xff0c;称为Linux防火墙的“内核…

MHA高可用及故障切换

一、什么是 MHA MHA&#xff08;MasterHigh Availability&#xff09;是一套优秀的MySQL高可用环境下故障切换和主从复制的软件。 MHA 的出现就是解决MySQL 单点的问题。 MySQL故障切换过程中&#xff0c;MHA能做到0-30秒内自动完成故障切换操作。 MHA能在故障切换的过程中最大…

Vue中如何实现城市3D分布图

cityfenbu.vue <template><div ><el-card class"seriesmap-box-card"><div slot"header" class"clearfix"><span>城市分布图 (点击可下钻到县)</span></div><div><div class"series-ma…

c语言练习45:模拟实现内存函数memcpy

模拟实现内存函数memcpy 针对内存块&#xff0c;不在乎内存中的数据。 拷贝内容有重叠的话应用memmove 模拟实现&#xff1a; 代码&#xff1a; 模拟实现memcpy #include<stdio.h> #include<assert.h> void* my_memcpy(void* dest, const void* src, size_t num…

【Linux】网络编程网络基础(C++)

目录 一、计算机网络背景 二、认识 "协议" 三、网络协议初识 【3.1】协议分层 【3.2】OSI七层模型 【3.3】TCP/IP五层(或四层)模型 四、网络传输基本流程 【4.1】网络传输流程图 【4.2】数据包封装和分用 五、网络中的地址管理 一、计算机网络背景 【独立…

谷粒商城----缓存与分布式锁

1、缓存使用 为了系统性能的提升&#xff0c;我们一般都会将部分数据放入缓存中&#xff0c;加速访问。而 db 承担数据落盘工作。 哪些数据适合放入缓存&#xff1f;  即时性、数据一致性要求不高的  访问量大且更新频率不高的数据&#xff08;读多&#xff0c;写少&…