基于Python+DenseNet121算法模型实现一个图像分类识别系统案例

目录

  • 介绍
  • 在TensorFlow中的应用
  • 实战案例
  • 最后

一、介绍

DenseNet(Densely Connected Convolutional Networks)是一种卷积神经网络(CNN)架构,2017年由Gao Huang等人提出。该网络的核心思想是密集连接,即每一层都接收其前面所有层的输出作为输入。DenseNet121是该家族中的一个特定模型,其中121表示网络的总层数。
DenseNet121的主要特点如下:

  1. 密集连接(Dense Connection):在一个Dense Block内,第 i 层的输入不仅仅是第 i−1 层的输出,还包括第 i−2 层、第 i−3 层等所有之前层的输出。这种密集连接方式促进了特征的重用。
  2. 参数效率:由于特征在网络中得以重复使用,DenseNet相较于其他深度网络模型(如VGG或ResNet)通常需要更少的参数来达到相同(或更好)的性能。
  3. 特征复用与强化:密集连接方式也促进了梯度的反向传播,使得网络更容易训练。同时,低层特征能被直接传播到输出层,因此被更好地强化和利用。
  4. 过拟合抑制:由于有更少的参数和更好的参数复用,DenseNet很适合用于数据集较小的场合,能在一定程度上抑制过拟合。
  5. 增加网络深度:由于密集连接具有利于梯度反向传播的特性,DenseNet允许构建非常深的网络。
  6. 计算效率:虽然有很多连接,但由于各层之间传递的是特征图(而不是参数或梯度),因此在计算和内存效率方面表现得相对较好。
  7. 易于修改和适应:DenseNet架构很容易进行各种修改,以适应不同的任务和应用需求。

DenseNet121在很多计算机视觉任务中都表现出色,例如图像分类、目标检测和语义分割等。因其出色的性能和高效的参数使用,DenseNet121常被用作多种视觉应用的基础模型。以下DeseNet算法与ResNet算法的区别。

特性/算法DenseNetResNet
连接方式每一层都与其前面的所有层密集连接每一层仅与其前一层进行残差连接
参数效率更高,由于特征复用相对较低
特征复用高度的特征复用,所有前面层的输出都用作每一层的输入仅前一层的输出被用于下一层
梯度流动由于密集连接,梯度流动更容易通过残差连接改善梯度流动,但相对于DenseNet可能较弱
过拟合抑制更强,尤其在数据集小的情况下相对较弱
计算复杂度一般来说更低,尽管有更多的连接一般来说更高,尤其是在深层网络中
网络深度可以更深,且更容易训练可以很深,但通常需要更仔细的设计
可适应性架构灵活,易于修改相对灵活,但大多数改动集中在残差块的设计
创新点密集连接残差连接
主要应用图像分类、目标检测、语义分割等图像分类、目标检测、人脸识别等

这两种网络架构都在多种计算机视觉任务中表现出色,但根据具体应用的需求和限制,你可能会选择其中一种作为基础模型。

二、在TensorFlow中的应用

在TensorFlow(特别是TensorFlow 2.x版本)中使用DenseNet121模型非常方便,因为该模型已经作为预训练模型的一部分集成在TensorFlow库中。以下是一些常见用法的示例。

导入库和模型

首先,确保您已经安装了TensorFlow库。然后,导入所需的库和模型。

import tensorflow as tf
from tensorflow.keras.applications import DenseNet121

实例化模型

您可以通过以下方式实例化一个DenseNet121模型:

# 预训练权重和全连接层
model = DenseNet121(weights='imagenet', include_top=True)# 预训练权重但无全连接层(用于特征提取)
model = DenseNet121(weights='imagenet', include_top=False)

数据预处理

DenseNet121需要特定格式的输入数据。通常,您需要将输入图像缩放到224x224像素,并进行一些额外的预处理。

from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.densenet import preprocess_input
import numpy as npimg_path = 'your_image_path.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

模型预测

使用预处理过的图像进行预测:

preds = model.predict(x)

三、实战案例

如下图所示,通过对几种常见的水果数据集进行训练,最后得到模型。下面是其经过25轮迭代训练的训练过程图、ACC曲线图、LOSS曲线图、可视化界面等
image-20230830204342058
image-20230830204354416
image-20230830204404260
img_05_12_17_39_35

四、最后

大家可以尝试通过DenseNet121算法训练自己的数据集,然后封装成可视化界面部署等。由于研发投入项目付非提供(提供包括数据集、训练预测代码、训练好的模型、WEB网页端界面、包远程安装调试部署)。如需要请或类似项目订制开发请访问:https://www.yuque.com/ziwu/yygu3z/sr43e6q0wormmfpv

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/127574.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python实现猎人猎物优化算法(HPO)优化循环神经网络回归模型(LSTM回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei& Keynia于2022年提出的一种最新的…

【基础计算机网络1】认识计算机网络体系结构,了解计算机网络的大致模型(上)

前言 今天,小编我也要进入计算机网络的整个内容,虽然这个计算机网络的内容在考研部分中占比比较小,有些人不把这一部分当成重点,这种想法是错误的。我觉得考研的这四个内容都是非常重要的,我们需要进行全力以赴的对待每…

二叉树(上)

“路虽远,行则将至” ❤️主页:小赛毛 目录 1.树概念及结构 1.1树的概念 1.2 树的相关概念 1.3 树的表示(树的存储) 2.二叉树概念及结构 2.1概念 2.2现实中的二叉树 2.3 特殊的二叉树: 2.4 二叉树的性质 3.二叉树的顺…

RabbitMq消息模型-队列消息

队列消息分为2种: 基本模型(SimpleQueue)、工作模型(WorkQueue) 队列消息特点: 消息不会丢失 并且 有先进先出的顺序。消息接收是有顺序的,不是随机的,仅有一个消费者能拿到数据&…

Java 【异常】

一、认识异常 Exception 在 Java 中,将程序执行过程中发生的不正常行为称为异常 。 异常是异常exception,报错是报错error 1.算数异常 0不能作为除数,所以算数异常 2.空指针异常 arr不指向任何对象,打印不出arr的长度,…

Spring 6.X IoC 容器

目录 一、Spring IoC 容器和 Bean 简介1.1、容器概述1.3、使用 一、Spring IoC 容器和 Bean 简介 下面主要介绍 Spring 框架对控制反转 (IoC) 原理的实现 首先要说明的是:IoC 也称为依赖注入,这是一个过程。 其次依赖项的定义:对象仅通过构造…

C#,《小白学程序》第十六课:随机数(Random)第三,正态分布的随机数的计算方法与代码

1 随机数的问题 用 C# Random 类生成的随机数是平均分布的。也就是各数据段的出现的次数差不多。彩票号码属于这种随机数。 而很多很多常见的随机数,比如:成绩,却是符合正态分布的。 因而很多时候需要生成符合正态分布规律的随机数。 2 文…

ROS2-IRON Ubuntu-22.0 源码下载失败解决方法 vcs import --input

ROS2 一.ROS2 IRON环境搭建1.设置系统字符集为UTF-82.将RO2 apt 库添加到系统中3.添加ROS2 GPG key4.添加ROS 2 的软件源安装开发工具 二.下载ROS2sh源代码编译 一.ROS2 IRON环境搭建 虚拟机系统:Ubuntu22.04 虚拟机:VMware-player-full-16.2.5-2090451…

LeetCode刷题笔记【26】:贪心算法专题-4(柠檬水找零、根据身高重建队列、用最少数量的箭引爆气球)

文章目录 前置知识860.柠檬水找零题目描述解题思路代码 406.根据身高重建队列题目描述解题思路代码 452. 用最少数量的箭引爆气球题目描述踩坑-进行模拟正确思路的贪心 总结 前置知识 参考前文 参考文章: LeetCode刷题笔记【23】:贪心算法专题-1&#x…

OpenCV之形态学操作

形态学操作包含以下操作: 腐蚀 (Erosion)膨胀 (Dilation)开运算 (Opening)闭运算 (Closing)形态梯度 (Morphological Gradient)顶帽 (Top Hat)黑帽(Black Hat) 其中腐蚀和膨胀操作是最基本的操作,其他操作由这两个操作变换而来。 腐蚀 用一个结构元素…

YOLO目标检测——密集人群人头数据集+已标注yolo格式标签下载分享

实际项目应用:城市安防、交通管理、社会研究、商业应用、等多个领域数据集说明:YOLO密集人群人头目标检测数据集,真实场景的高质量图片数据,数据场景丰富,图片格式为jpg,共4300张图片。标注说明&#xff1a…

vue3详解

认识Vue3 1. Vue2 选项式 API vs Vue3 组合式API <script> export default {data(){return {count:0}},methods:{addCount(){this.count}} } </script> <script setup> import { ref } from vue const count ref(0) const addCount ()> count.value …

区块链技术与应用 - 学习笔记2【密码学基础】

大家好&#xff0c;我是比特桃。本系列笔记只专注于探讨研究区块链技术原理&#xff0c;不做其他违反相关规定的讨论。 区块链技术已被纳入国家十四五规划&#xff0c;在“加快数字发展 建设数字中国”篇章中&#xff0c;区块链被列为“十四五”七大数字经济重点产业之一&#…

kafka-- 安装kafka manager及简单使用

一 、安装kafka manager 管控台&#xff1a; # 安装kafka manager 管控台&#xff1a; ## 上传 cd /usr/local/software ## 解压 unzip kafka-manager-2.0.0.2.zip -d /usr/local/ cd /usr/local/kafka-manager-2.0.0.2/conf vim /usr/local/kafka-manager-2.0.0.2/conf/appl…

解决虚拟机克隆后IP和命名冲突问题

目录 解决IP冲突问题 解决命名冲突 解决IP冲突问题 克隆后的虚拟机和硬件地址和ip和我们原虚拟机的相同&#xff0c;我们需要重新生成硬件地址和定义ip&#xff0c;步骤如下&#xff1a; &#xff08;1&#xff09;进入 /etc/sysconfig/network-scripts/ifcfg-ens33 配置文件…

PaddleOCR学习笔记3-通用识别服务

今天优化了下之前的初步识别服务的python代码和html代码。 采用flask paddleocr bootstrap快速搭建OCR识别服务。 代码结构如下&#xff1a; 模板页面代码文件如下&#xff1a; upload.html : <!DOCTYPE html> <html> <meta charset"utf-8"> …

在UE4虚幻引擎中加入导航网格体边界体积后丧尸不能移动和发现玩家

UE4系列文章目录 文章目录 UE4系列文章目录前言一、用到的知识点二、问题原因 前言 最近使用ue4做第一人称视角射击游戏发现问题&#xff0c;加入导航网格体边界体积后丧尸不能移动和发现玩家。下图是出现的问题图片 一、用到的知识点 1.行为树&#xff1a;控制并显示AI的决…

基于Zookeeper搭建Kafka高可用集群(实践可用)

目录 一、Zookeeper集群搭建 1.1 下载 & 解压 1.2 修改配置 1.3 标识节点 1.4 启动集群 1.5 集群验证 二、Kafka集群搭建 2.1 下载解压 2.2 拷贝配置文件 2.3 修改配置 2.4 启动集群 2.5 创建测试主题 2.6 写入数据测试 一、Zookeeper集群搭建 为保证集群高可…

Python实操:内存管理与优化策略

在 Python 开发过程中&#xff0c;合理有效地管理和优化内存使用是提高程序性能和效率的关键。本文将深入探讨 Python 中的内存管理机制&#xff0c;并分享一些实用的优化策略和具体操作步骤&#xff0c;帮助您更好地利用资源、减少内存占用并提升代码执行速度。 一、了解 Pyth…

66.C++多态与虚函数

目录 1.什么是多态 2.多态的分类 3.对象转型 3.1 向上转型&#xff1a; 3.2 向下转型&#xff1a; 4.虚函数 1.什么是多态 生活中的多态&#xff0c;是指的客观的事物在人脑中的主观体现。例如&#xff0c;在路上看到⼀只哈士奇&#xff0c;你可以看做是哈士奇&#xf…