python28种极坐标绘图函数总结

文章目录

    • 基础图
    • 误差线
    • 等高线polar
    • 场图polar
    • 统计图
    • 非结构坐标图

📊python35种绘图函数总结,3D、统计、流场,实用性拉满

matplotlib中的画图函数,大部分情况下只要声明坐标映射是polar,就都可以画出对应的极坐标图。但极坐标和直角坐标的坐标区间不同,所以有些数据和函数关系适合在直角坐标系中展示,而有些则适合在及坐标中展示。

基础图

函数坐标参数图形类别
plotx,y曲线图
stackplotx,y散点图
stemx,y茎叶图
scatterx,y散点图
polarx,y极坐标图
stepx,y步阶图
barx,y条形图
barhx,y横向条形图

在这里插入图片描述
bar和barh的对偶关系稍微有些抽象,可以理解为前者是以角度方向为x轴;而barh则是以半径方向为x轴。

代码如下

import matplotlib.pyplot as plt
import numpy as npx = np.arange(20)/2
y = xfDct = {"plot" : plt.plot,  "stackplot": plt.stackplot,"stem" : plt.stem,  "scatter"  : plt.scatter,         "polar": plt.polar, "step"     : plt.step, "bar"  : plt.bar,   "barh"     : plt.barh, }fig = plt.figure(figsize=(14,6))
for i,key in enumerate(fDct, 1):ax = fig.add_subplot(2,4,i, projection="polar")fDct[key](x, y)plt.title(key)plt.tight_layout()
plt.show()

误差线

函数坐标图形类别
errorbarx,y,xerr,yerr误差线
fill_betweenx,y1,y2纵向区间图
fill_betweenxy, x1, x2横向区间图

在这里插入图片描述

代码如下

x = np.arange(20)/2
y = x
y1, y2 = 0.9*y, 1.1*y
x1, x2 = 0.9*x, 1.1*x
xerr = np.abs([x1, x2])/10
yerr = np.abs([y1, y2])/10fig = plt.figure(figsize=(12,4))ax = fig.add_subplot(141, projection='polar')
ax.errorbar(x, y, yerr=yerr)
plt.title("errorbar with yerr")ax = fig.add_subplot(142, projection='polar')
ax.errorbar(x, y, xerr=xerr)
plt.title("errorbar with xerr")ax = fig.add_subplot(143, projection='polar')
ax.fill_between(x, y1, y2)
plt.title("fill_between")ax = fig.add_subplot(144, projection='polar')
ax.fill_betweenx(y, x1, x2)
plt.title("fill_betweenx")plt.tight_layout()
plt.show()

等高线polar

绘图函数坐标说明
contour[x,y,]z等高线
contourf[x,y,]z填充等高线
pcolormesh[x,y,]z伪彩图

由于imshow默认其绘图坐标是标准的1x1网格,而在极坐标种,这种网格的尺寸会随着r的增大而增大,从而变得极其不实用,所以下面对极坐标图的演示,就不包含imshow了。

在这里插入图片描述

代码如下

X, Y = np.indices([100,100])
X = X/100*np.pi*2
Y = Y/25 - 2
Z = (1 - np.sin(X) + np.cos(X)**5 + Y**3) * np.exp(-Y**2)fDct = {"contour": plt.contour, "contourf":plt.contourf, "pcolormesh" : plt.pcolormesh}fig = plt.figure(figsize=(9,3))
for i,key in enumerate(fDct, 1):ax = fig.add_subplot(1,3,i, projection='polar')fDct[key](X,Y,Z)plt.title(key)plt.tight_layout()
plt.show()

场图polar

绘图函数坐标说明
quiverx,y,u,v向量场图
streamplotx,y,u,v流场图
barbsx,y,u,v风场图

在这里插入图片描述

代码如下

Y, X = np.indices([10,10])
X = X/10*np.pi*2.5
Y = Y#Y, X = np.indices([6,6])/0.75 - 4
U = 6*np.sin(X) + Y
V = Y - 6*np.sin(X)dct = {"quiver":plt.quiver, "streamplot":plt.streamplot, "barbs" :plt.barbs}fig = plt.figure(figsize=(12,4))for i,key in enumerate(dct, 1):ax = fig.add_subplot(1,3,i,projection='polar')dct[key](X,Y,U,V)plt.title(key)plt.tight_layout()
plt.show()

统计图

绘图函数坐标说明
histx数据直方图
boxplotx箱线图
violinplotx小提琴图
enventplotx平行线疏密图
hist2dx,y二维直方图
hexbinx,y钻石图
piex饼图

极坐标在绘制直方图的时候,需要注意其横坐标是以 2 π 2\pi 2π为周期的,也就是说随机变量的最大值和最小值不得相差 2 π 2\pi 2π,否则会导致重叠。

在这里插入图片描述
由于极坐标绘图本质上是一种坐标映射,所以并不会把0和360°真正地等同起来,所以在hist2d中,整个图像并没有闭合。而最有意思的是饼图,直接给压扁了,让人很难一下子看出不同组分的比例关系。

代码如下

x = np.random.standard_normal(size=1000)dct = {"hist"  : plt.hist, "violinplot" : plt.violinplot,"boxplot": plt.boxplot}fig = plt.figure(figsize=(10,6))
for i,key in enumerate(dct, 1):ax = fig.add_subplot(2,3,i, projection='polar')dct[key](x)plt.title(key)ax = fig.add_subplot(234, projection='polar')
ax.eventplot(x)
plt.title("eventplot")x = np.random.randn(5000)
y = 1.2 * x + np.random.randn(5000) / 3
ax = fig.add_subplot(235, projection='polar')
ax.hist2d(x, y, bins=[np.arange(-3,3,0.1)] * 2)
plt.title("hist2d")ax = fig.add_subplot(236, projection='polar')
ax.pie([1,2,3,4,5])
plt.title("pie")plt.tight_layout()
plt.show()

非结构坐标图

绘图函数坐标说明
tricontourx,y,z非结构等高线
tricontourfx,y,z非结构化填充等高线
tricolorx,y,z非结构化伪彩图
triplotx,y三角连线图

在这里插入图片描述

代码如下

x = np.random.uniform(0, np.pi*2, 256)
y = np.random.uniform(-2, 2, 256)
z = (1 - np.sin(x) + np.cos(x)**5 + y**3) * np.exp(-y**2)levels = np.linspace(z.min(), z.max(), 7)fig = plt.figure(figsize=(12,4))ax = fig.add_subplot(141, projection='polar')
ax.plot(x, y, 'o', markersize=1, color='lightgrey', alpha=0.5)
ax.tricontour(x, y, z, levels=levels)
plt.title("tricontour")ax = fig.add_subplot(142, projection='polar')
ax.plot(x, y, 'o', markersize=1, color='lightgrey', alpha=0.5)
ax.tricontourf(x, y, z, levels=levels)
plt.title("tricontourf")ax = fig.add_subplot(143, projection='polar')
ax.plot(x, y, 'o', markersize=1, color='lightgrey', alpha=0.5)
ax.tripcolor(x, y, z)
plt.title("tripcolor")ax = fig.add_subplot(144, projection='polar')
ax.triplot(x,y)
plt.title("triplot")plt.tight_layout()
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/128188.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

9、补充视频

改进后的dijkstra算法 利用小根堆 将小根堆特定位置更改,再改成小根堆 nodeHeap.addOrUpdateOrIgnore(edge.to, edge.weight + distance);//改进后的dijkstra算法 //从head出发,所有head能到达的节点,生成到达每个节点的最小路径记录并返回 public static HashMap<No…

c语言练习44:深入理解strstr

深入理解strstr strstr作用展示&#xff1a; #include <stdio.h> #include <string.h> int main() {char str[] "This is a simple string";char* pch;pch strstr(str, "simple");/*strncpy(pch, "sample", 6);*/printf("%s…

Nginx详解 第五部分:Ngnix反向代理(负载均衡 动静分离 缓存 透传 )

Part 5 一、正向代理与反向代理1.1 正向代理简介1.2 反向代理简介 二、配置反向代理2.1 反向代理配置参数2.1.1 proxy_pass2.1.2 其余参数 2.2 配置实例:反向代理单台web服务器2.3 代理转发 三、反向代理实现动静分离四、缓存功能五、反向代理客户端的IP透传5.1 原理概述5.2 一…

基于语雀编辑器的在线文档编辑与查看

概述 语雀是一个非常优秀的文档和知识库工具&#xff0c;其编辑器更是非常好用&#xff0c;虽无开源版本&#xff0c;但有编译好的可以使用。本文基于语雀编辑器实现在线文档的编辑与文章的预览。 实现效果 实现 参考语雀编辑器官方文档&#xff0c;其实现需要引入以下文件&…

Pandas 掉包侠刷题实战--条件筛选

本博文内容为力扣刷题过程的记录&#xff0c;所有题目来源于力扣。 题目链接&#xff1a;https://leetcode.cn/studyplan/30-days-of-pandas/ 文章目录 准备工作1. isin(values) 和 ~2. df.drop_duplicates()3. df.sort_values()4. df.rename()5. pd.merge() 题目-条件筛选1. 大…

入门人工智能 —— 使用 Python 进行文件读写,并完成日志记录功能(4)

入门人工智能 —— 使用 Python 进行文件读写&#xff08;4&#xff09; 入门人工智能 —— 使用 Python 进行文件读写打开文件读取文件内容读取整个文件逐行读取文件内容读取所有行并存储为列表 写入文件内容关闭文件 日志记录功能核心代码&#xff1a;完整代码&#xff1a;运…

RabbitMQ从入门到精通之安装、通讯方式详解

文章目录 RabbitMQ一、RabbitMQ介绍1.1 现存问题 一、RabbitMQ介绍二、RabbitMQ安装三、RabbitMQ架构四、RabbitMQ通信方式4.1 RabbitMQ提供的通讯方式4.2 Helloworld 方式4.2Work queues4.3 Publish/Subscribe4.4 Routing4.5 Topics4.6 RPC (了解) 五、Springboot 操作RabbitM…

【结合AOP与ReflectUtil对返回数据进行个性化填充展示】

结合AOP与ReflectUtil对返回数据进行个性化填充展示 背景 对于接口列表返回的数据&#xff0c;我们通常有时候会对某些特殊的字段进行转化&#xff0c;或者根据某逻辑进行重新赋值&#xff0c;举个例子&#xff0c; 比如返回的列表数据中有性别sex&#xff0c;我们通常会同时…

微信小程序实现连续签到七天

断签之后会从第一天重新开始 <template><view class"content" style"height: 100vh;background: white;"><view class"back"><view style"position: absolute;bottom: 200rpx;left: 40rpx;width: 90%;"><i…

无人机航线规划

无人机航线规划&#xff0c;对于无人机的任务执行有着至关重要的作用&#xff0c;无人机在从起点飞向目的点的过程中&#xff0c;如何规划出一条安全路径&#xff0c;并且保证该路径代价最优&#xff0c;是无人机航线规划的主要目的。其中路径最优的含义是&#xff0c;在无人机…

透视俄乌网络战之二:Conti勒索软件集团(上)

透视俄乌网络战之一&#xff1a;数据擦除软件 Conti勒索软件集团&#xff08;上&#xff09; 1. Conti简介2. 组织架构3. 核心成员4. 招募途径5. 工作薪酬6. 未来计划参考 1. Conti简介 Conti于2019年首次被发现&#xff0c;现已成为网络世界中最危险的勒索软件之一&#xff0…

goLang笔记+beego框架

goLang笔记+ 初始安装之后 GOPATH: Go开发相关的环境变量如下: GOROOT:GOROOT就是Go的安装目录,(类似于java的JDK) GOPATH:GOPATH是我们的工作空间,保存go项目代码和第三方依赖包 GOPATH可以设置多个,其中,第一个将会是默认的包目录,使用 go get 下载的包都会在第一…

Qt下SVG格式图片应用

SVG格式图片介绍 svg格式图片又称矢量图&#xff0c;该种格式的图片不同于png等格式的图片&#xff0c;采用的并不是位图的形式来组织图片&#xff0c;而是采用线条等组织图片&#xff0c;svg格式是图片的文件格式是xml&#xff0c;可以通过文件编译器打开查看svg格式内容。 …

【rust/egui】(七)看看template的app.rs:Slider

说在前面 rust新手&#xff0c;egui没啥找到啥教程&#xff0c;这里自己记录下学习过程环境&#xff1a;windows11 22H2rust版本&#xff1a;rustc 1.71.1egui版本&#xff1a;0.22.0eframe版本&#xff1a;0.22.0上一篇&#xff1a;这里 Slider 滑块&#xff0c;如下图 定义…

glibc2.35-通过tls_dtor_list劫持exit执行流程

前言 glibc2.35删除了malloc_hook、free_hook以及realloc_hook&#xff0c;通过劫持这三个hook函数执行system已经不可行了。 传统堆漏洞利用是利用任意地址写改上上述几个hook从而执行system&#xff0c;在移除之后则需要找到同样只需要修改某个地址值并且能够造成程序流劫持…

动态路由的主流算法

路由器就是一台网络设备&#xff0c;它有多张网卡。当一个入口的网络包送到路由器时&#xff0c;它会根据一个本地的转发信息库&#xff0c;来决定如何正确地转发流量。这个转发信息库通常被称为路由表。 一张路由表中会有多条路由规则。每一条规则至少包含这三项信息。 目的…

stable diffusion webui中的sampler

Stable Diffusion-采样器篇 - 知乎采样器&#xff1a;Stable Diffusion的webUI中&#xff0c;提供了大量的采样器供我们选择&#xff0c;例如Eular a&#xff0c; Heum&#xff0c;DDIM等&#xff0c;不同的采样器之间究竟有什么区别&#xff0c;在操作时又该如何进行选择&…

Vue2项目练手——通用后台管理项目第六节

Vue2项目练手——通用后台管理项目 用户管理页table表格获取表格数据目录列表user.jsmock.jsindex.jsUsers.vue 新增和编辑功能Users.vue 删除功能使用的组件Users.vue 用户管理页 table表格 使用的组件和前面的表格使用的一致。 获取表格数据 目录列表 user.js import Mo…

静态路由——实现两个不相连的网段通信实验

路漫漫其修远兮&#xff0c;吾将上下而求索 今天做一个简单的实现两个不相连的网段通信实验&#xff0c;本实验使用静态路由配置&#xff0c;主要 加强初学者对静态路由的理解。 实际中不可能只使用静态路由&#xff0c;还要使用诸多的其他网络协议&#xff0c;达到安全可靠的…

C语言柔性数组详解:让你的程序更灵活

柔性数组 一、前言二、柔性数组的用法三、柔性数组的内存分布四、柔性数组的优势五、总结 一、前言 仔细观察下面的代码&#xff0c;有没有看出哪里不对劲&#xff1f; struct S {int i;double d;char c;int arr[]; };还有另外一种写法&#xff1a; struct S {int i;double …