【NLP 20、Encoding编码 和 Embedding嵌入】

目录

一、核心定义与区别

二、常见Encoding编码

(1) 独热编码(One-Hot Encoding)

(2) 位置编码(Positional Encoding)

(3) 标签编码(Label Encoding)

(4) 注意事项 

三、常见Embedding词嵌入

(1) 基础词嵌入(nn.Embedding)

(2) 预训练嵌入(from_pretrained) 

(3) 类别特征嵌入(自定义类)

(4) 注意事项 

四、对比总结

五、编码与嵌入的联合使用

总结


新年快乐,这几天将之前做的笔记整理了一下,补充了一点,正式开始学习! 

                                                                                                                —— 24.2.4

一、核心定义与区别

特性Encoding(编码)Embedding(嵌入)
目标将数据转换为特定格式(如数值、二进制、位置信息等),以满足模型输入要求。将离散符号(如单词、类别)映射到低维连续向量空间,捕捉语义或结构关系。
数学形式通常为确定性规则或固定函数(如独热编码、位置编码)。通过可学习的参数矩阵(如神经网络中的嵌入层)生成。
维度维度可能较高(如独热编码的维度等于类别数量)。维度固定且较低(如词嵌入常用 100~1000 维)。
可训练性不可训练(静态规则)。可训练(通过反向传播优化)。
应用场景数据预处理、位置信息编码、分类标签处理。词向量表示、类别特征嵌入、图节点表示。

二、常见Encoding编码

(1) 独热编码(One-Hot Encoding)

  • 定义:将离散类别映射为二进制向量,仅一个位置为1,其余为0。

  • 注意:

    独热编码使用 torch.nn.functional.one_hot,注意设置 num_classes 参数。
  • 示例:

# 类别:["猫", "狗", "鸟"]
"猫" → [1, 0, 0]
"狗" → [0, 1, 0]
"鸟" → [0, 0, 1]
  • 缺点:维度爆炸(高维稀疏),无法表达类别间关系。

参数类型描述是否必需默认值
tensortorch.Tensor输入的整数类别索引张量(如 [0, 2, 1]-
num_classesint类别总数(决定输出维度)-

(2) 位置编码(Positional Encoding)

  • 定义:为序列数据(如文本、时间序列)添加位置信息,常用正弦/余弦函数生成。

  • 注意:

    位置编码自定义生成矩阵后叠加到词嵌入上,需与输入张量形状匹配。
  • Transformer 中的公式

参数类型描述是否必需默认值
max_seq_lenint最大序列长度(决定编码矩阵的行数)-
d_modelint特征维度(决定编码矩阵的列数)

(3) 标签编码(Label Encoding)

  • 定义:将类别映射为整数(如 "红"→0, "蓝"→1, "绿"→2),但可能引入错误的大小关系。

(4) 注意事项 

  1. 独热编码的输入限制

    • 输入张量必须是整数类型(如 torch.long)。

    • 索引值必须小于 num_classes,否则会越界。

  2. 位置编码的叠加方式

    • 需与词嵌入维度一致(d_model),且直接相加前确保形状匹配。

独热编码num_classes控制输出维度,避免索引越界
位置编码max_seq_lend_model定义编码矩阵的尺寸和特征维度

三、常见Embedding词嵌入

(1) 基础词嵌入(nn.Embedding

nn.Embedding()模块

注意:

词嵌入使用 nn.Embedding 层,输入为整数索引张量,输出为浮点数向量。
embedding_layer = nn.Embedding(num_embeddings=10000, embedding_dim=300)
参数类型描述是否必需默认值
num_embeddingsint词汇表大小(唯一符号数量)-
embedding_dimint嵌入向量的维度-
padding_idxint填充符索引(对应向量初始化为零)None
max_normfloat向量最大范数(超过时缩放)None
scale_grad_by_freqbool根据词频缩放梯度(罕见词更大更新)False
import torch.nn as nn# 定义嵌入层:词汇表大小=10000,嵌入维度=300
embedding_layer = nn.Embedding(num_embeddings=10000, embedding_dim=300)# 输入:单词索引(形状 [batch_size, seq_len])
input_ids = torch.LongTensor([[1, 22, 45], [3, 8, 2]])  # 示例输入# 获取词嵌入向量
embeddings = embedding_layer(input_ids)  # 输出形状 [2, 3, 300]

(2) 预训练嵌入(from_pretrained 

nn.Embedding.from_pretrained()

注意: 

预训练嵌入通过 from_pretrained 加载,freeze=True 可固定嵌入参数(适用于迁移学习)。
pretrained_emb = nn.Embedding.from_pretrained(glove.vectors, freeze=True)
参数类型描述是否必需默认值
embeddingstorch.Tensor预训练嵌入矩阵(形状 [num_emb, dim]-
freezebool是否冻结参数(不更新)True
padding_idxint同基础 nn.EmbeddingNone
max_normfloat同基础 nn.EmbeddingNone

如GloVe: 

from torchtext.vocab import GloVe# 加载预训练的 GloVe 词向量
glove = GloVe(name='6B', dim=100)  # 使用 100 维的 GloVe# 获取单词 "apple" 的向量
apple_vector = glove['apple']  # 形状 [100]# 将预训练向量转换为嵌入层
pretrained_emb = nn.Embedding.from_pretrained(glove.vectors, freeze=False)  # freeze=True 表示不更新

(3) 类别特征嵌入(自定义类)

CategoryEmbedding
user_embedding = CategoryEmbedding(num_categories=1000, embedding_dim=64)
参数类型描述是否必需默认值
num_categoriesint类别总数(如用户数、商品数)-
embedding_dimint嵌入向量的维度-

注意:

类别嵌入将高基数类别(如用户ID)映射为低维向量,避免维度爆炸。
import torch.nn as nnclass CategoryEmbedding(nn.Module):def __init__(self, num_categories, embedding_dim):super().__init__()self.embedding = nn.Embedding(num_categories, embedding_dim)def forward(self, category_ids):return self.embedding(category_ids)# 示例:用户ID嵌入(假设有 1000 个用户)
user_embedding = CategoryEmbedding(num_categories=1000, embedding_dim=64)
user_ids = torch.tensor([5, 12, 8])  # 输入用户ID
embedded_users = user_embedding(user_ids)  # 形状 [3, 64]

(4) 注意事项 

  1. 嵌入层的输入要求

    • nn.Embedding 的输入为整数索引,非浮点数。

  2. 预训练嵌入的兼容性

    • 加载预训练向量时,需确保 num_embeddings 和 embedding_dim 与预训练矩阵一致。

基础词嵌入num_embeddingsembedding_dim决定嵌入层的输入输出维度
预训练嵌入embeddingsfreeze加载外部知识,控制参数更新
类别嵌入num_categoriesembedding_dim处理高基数离散特征,避免维度灾难

四、对比总结

维度EncodingEmbedding
语义保留无(仅符号化)高(捕捉语义相似性)
计算开销低(静态计算)高(需训练参数)
灵活性固定规则可自适应任务优化
典型应用数据预处理、位置编码词向量、推荐系统、图表示学习
场景推荐方法
类别特征且维度低独热编码(简单高效)
类别特征维度高(如用户ID)嵌入(避免维度灾难)
序列位置信息位置编码(如 Transformer)
需要捕捉语义相似性嵌入(如词向量)
计算资源有限优先选择静态编码(如哈希编码)

五、编码与嵌入的联合使用

在 Transformer 中,词嵌入位置编码共同构成输入表示:

参数类型描述是否必需默认值
vocab_sizeint词汇表大小(词嵌入参数)-
d_modelint特征维度(词嵌入和位置编码共享)-
max_seq_lenint最大序列长度(位置编码参数)-
import torch
import torch.nn as nnclass TransformerInput(nn.Module):def __init__(self, vocab_size, d_model, max_seq_len):super().__init__()self.token_embedding = nn.Embedding(vocab_size, d_model)self.position_encoding = self._generate_position_encoding(max_seq_len, d_model)def _generate_position_encoding(self, max_len, d_model):position = torch.arange(max_len).unsqueeze(1)div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))pe = torch.zeros(max_len, d_model)pe[:, 0::2] = torch.sin(position * div_term)pe[:, 1::2] = torch.cos(position * div_term)return pe  # 形状: [max_len, d_model]def forward(self, x):# x: [batch_size, seq_len]token_emb = self.token_embedding(x)  # [batch_size, seq_len, d_model]seq_len = x.size(1)positions = self.position_encoding[:seq_len, :]  # [seq_len, d_model]return token_emb + positions  # [batch_size, seq_len, d_model]

总结

  • Encoding 是广义的数据转换方式,强调格式兼容性(如独热编码、位置编码)。

  • Embedding 是特殊的编码方法,通过可学习的低维向量捕捉语义信息(如词嵌入)。

  • 两者常结合使用(如 Transformer 中的词嵌入+位置编码),分别处理不同维度的信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/12952.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ArcGIS Pro 简介1】

ArcGIS Pro 是由 Esri (Environmental Systems Research Institute)公司开发的下一代桌面地理信息系统(GIS)软件,是传统 ArcMap 的现代化替代产品。它结合了强大的空间分析能力、直观的用户界面和先进的三维可视化技术…

初学 Xvisor 之理解并跑通 Demo

官网:https://www.xhypervisor.org/ quick-start 文档:https://github.com/xvisor/xvisor/blob/master/docs/riscv/riscv64-qemu.txt 零、Xvisor 介绍 下面这部分是 Xvisor 官方的介绍 Xvisor 是一款开源的 Type-1 虚拟机管理程序,旨在提供一…

“AI智能分析综合管理系统:企业管理的智慧中枢

在如今这个快节奏的商业世界里,企业面临的挑战越来越多,数据像潮水一样涌来,管理工作变得愈发复杂。为了应对这些难题,AI智能分析综合管理系统闪亮登场,它就像是企业的智慧中枢,让管理变得轻松又高效。 过去…

LabVIEW涡轮诊断系统

一、项目背景与行业痛点 涡轮机械是发电厂、航空发动机、石油化工等领域的核心动力设备,其运行状态直接关系到生产安全与经济效益。据统计,涡轮故障导致的非计划停机可造成每小时数十万元的经济损失,且突发故障可能引发严重安全事故。传统人…

Hugging Face 的研究人员正致力于打造 OpenAI 深度研究工具的“开源版

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

Java进阶(JVM调优)——阿里云的Arthas的使用 安装和使用 死锁查找案例,重新加载案例,慢调用分析

前言 JVM作为Java进阶的知识,是需要Java程序员不断深度和理解的。 本篇博客介绍JVM调优的工具阿里云的Arthas的使用,安装和使用,命令的使用案例;死锁查询的案例;重新加载一个类信息的案例;调用慢的分析案…

通过docker安装部署deepseek以及python实现

前提条件 Docker 安装:确保你的系统已经安装并正确配置了 Docker。可以通过运行 docker --version 来验证 Docker 是否安装成功。 网络环境:保证设备有稳定的网络连接,以便拉取 Docker 镜像和模型文件。 步骤一:拉取 Ollama Docker 镜像 Ollama 可以帮助我们更方便地管理…

快速傅里叶离散变换FFT (更新中)

声明:参考了 y y c yyc yyc 的 blog 和 PPT (from smwc) ,以及 w z r wzr wzr 的 blog 。 目录 Part 1 多项式Part 2 FFT概论Part 3 点值与插值Part 4 复数,单位根Part 5 Part 1 多项式 定义:对于有限数列 A 0 A_{0} A0​~ n…

w193基于Spring Boot的秒杀系统设计与实现

🙊作者简介:多年一线开发工作经验,原创团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹赠送计算机毕业设计600个选题excel文…

Spark--如何理解RDD

1、概念 rdd是对数据集的逻辑表示,本身并不存储数据,只是封装了计算逻辑,并构建执行计划,通过保存血缘关系来记录rdd的执行过程和历史(当一个rdd需要重算时,系统会根据血缘关系追溯到最初的数据源&#xff…

旋钮屏设备物联网方案,ESP32-C3无线通信应用,助力设备智能化升级

在智能家居的浪潮中,旋钮屏以其独特的交互方式和便捷的操作体验,逐渐成为智能家电控制面板上的新宠儿。从智能冰箱、洗衣机到烤箱、空气炸锅等设备,旋钮屏的应用无处不在。 通过简单的旋转和按压操作,用户可以轻松调节温度、时间…

crewai框架第三方API使用官方RAG工具(pdf,csv,json)

最近在研究调用官方的工具,但官方文档的说明是在是太少了,后来在一个视频里看到了如何配置,记录一下 以PDF RAG Search工具举例,官方文档对于自定义模型的说明如下: 默认情况下,该工具使用 OpenAI 进行嵌…

嵌入式工程师必学(143):模拟信号链基础

概述: 我们每天使用的许多电子设备,以及我们赖以生存的电子设备,如果不使用电子工程师设计的实际输入信号,就无法运行。 模拟信号链由四个主要元件组成:传感器、放大器、滤波器和模数转换器 (ADC)。这些传感器用于检测、调节模拟信号并将其转换为适合由微控制器或其他数…

C++11详解(二) -- 引用折叠和完美转发

文章目录 2. 右值引用和移动语义2.6 类型分类(实践中没什么用)2.7 引用折叠2.8 完美转发2.9 引用折叠和完美转发的实例 2. 右值引用和移动语义 2.6 类型分类(实践中没什么用) C11以后,进一步对类型进行了划分&#x…

NeetCode刷题第21天(2025.2.4)

文章目录 114 Gas Station 加油站115 Hand of Straights 顺子之手116 Merge Triplets to Form Target 将 Triplelet 合并到 Form Target117 Partition Labels 分区标签118 Valid Parenthesis String 有效的括号字符串119 Insert Interval 插入间隔120 Merge Intervals 合并区间…

车载软件架构 --- 基于AUTOSAR软件架构的ECU开发流程小白篇

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活…

Ollama本地搭建大模型

短短一夜之间,中国的AI大模型DeepSeek迅速崛起,成功引起了全球科技界的广泛关注。 deepSeek爆火时间线 DeepSeek大事记 技术突破与产品发布 2024年12月26日:DeepSeek-V3发布,知识类任务水平提升,生成吐字速度加快。…

C#结合html2canvas生成切割图片并导出到PDF

目录 需求 开发运行环境 实现 生成HTML范例片断 HTML元素转BASE64 BASE64转图片 切割长图片 生成PDF文件 小结 需求 html2canvas 是一个 JavaScript 库,它可以把任意一个网页中的元素(包括整个网页)绘制到指定的 canvas 中&#xf…

【通俗易懂说模型】线性回归(附深度学习、机器学习发展史)

🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀深度学习_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前言 2. …

C#面试常考随笔12:游戏开发中常用的设计模式【C#面试题(中级篇)补充】

C#面试题(中级篇),详细讲解,帮助你深刻理解,拒绝背话术!-CSDN博客 简单工厂模式 优点: 根据条件有工厂类直接创建具体的产品 客户端无需知道具体的对象名字,可以通过配置文件创建…