【初/高中生讲机器学习】0. 本专栏 “食用” 指南——写在一周年之际⭐

创建时间:2025-01-27
首发时间:2025-01-29
最后编辑时间:2025-01-29
作者:Geeker_LStar

你好呀~这里是 Geeker_LStar 的人工智能学习专栏,很高兴遇见你~
我是 Geeker_LStar,一名高一学生,热爱计算机和数学,我们一起加油~!
⭐(●’◡’●) ⭐
那就让我们开始吧!

好耶!!(撒花)

这个专栏一岁啦!!从初三寒假写到高一寒假,它见证了我一年的成长。

一周年之际,也算是完结之际,这篇文章是对整个专栏的介绍~!

关于这个专栏的 2W1H

  • What:这个专栏是什么?
  • Why:为什么我会写这个专栏?
  • How:如何使用这个专栏?
  • Passion Is All You Need.

What:这个专栏是什么?

正如标题中【】框起来的部分,这是一个由高中生写的机器学习专栏。
这个专栏从 2024.01.29 开始更新,这篇介绍写于 2025.01.29,恰好是一周年,也恰好是专栏(第一次)完结的时间。

这个专栏的宗旨是 “用最具象的方式讲最抽象的东西”。(此处的 “抽象” 有两层意思啊不是(

专栏中每一篇文章我都写得很认真,每一篇的思路链条都经过了一次次地修改和完善。除了对算法和公式的讲解,我也会加入自己在学习这个算法的时候遇到的问题,以及我更多的思考。
我努力把每个算法背后的 motivation 展现出来,在我看来,这是一个算法最核心的东西。理解了 motivation,数学推导也就没有那么难了。

这是专栏中所有文章的合集:
【机器学习】全系列合集,戳这里!(更新中)

\begin 注意:
序号 3-15 的文章是初三(主要是初三寒假)的时候写的,可能会出现一些漏洞(理解 & 符号使用 & 公式,等等很多方面),如果觉得有问题欢迎找我!!! 这部分的文章会在后面的一年中进行更多的打磨和修改!
序号 15 往后的文章主要是高一上学期写的,相对来讲会更专业一些~后面也会进行一些打磨!
\end 注意
(噗哈哈哈这个 \begin 和 \end 不是渲染的问题,我就是这么打的))

Why:为什么我会写这个专栏?

——因为我觉得现有的机器学习资料对初学者太不友好了😭。
“默认” 的数学基础、堆在一起还缺乏解释的公式,无处不在的 “显然” 和 “省略”…

这真的会让人爆炸的🤯,我初学机器学习的那两个月几乎每天都处在这种 “爆炸” 当中。
所以我想写一点对初学者,对很多和我一样的初学者友好的东西,说得再直白点就是让人能看懂的东西。包括但不限于轻松的语言风格,丰富具体的例子,包含详细解释的数学推导,等等。

这个想法在当时可以说是一种冲动,这种冲动大约持续了一个月,随后则成为了一种习惯——在后来的十一个月当中。

That’s all.

接着,我们来说点执行层面的事情(???bruh 这个词为什么这么熟悉)——这个专栏应该怎么看?以什么样的顺序看?每一篇文章有没有具体需要注意的点?

How:如何使用这个专栏?

好呀~那我们就来聊聊具体应该如何使用这个专栏吧!

首先,在深入学习每一个算法之前,你需要对机器学习的一些基础知识有一个大致的了解。

嗯…这个专栏的第一、二篇文章一直没有写,其实它们就是给 “机器学习概述” 留的位置啦!等我写好了会放在这里的!
不过其实,虽然现在还没写好,但是写过的一些内容也涵盖了机器学习的基础知识,如下啦~

用于参数估计(模型优化)的两大方法:
12. 似然函数和极大似然估计:原理、应用与代码实现
15. EM 算法一万字详解!一起来学!

一些可以评估模型性能的指标:
6. 分类算法中常用的模型评价指标有哪些?here!
11. 回归算法中常用的模型评价指标有哪些?here!

确定模型超参数的方法:
7. 交叉验证是什么?有哪些?怎么实现?来看!

同时,还可以简单了解一下熵的概念,有助于更好地理解后面具体算法中的内容:
22. 信息论基础:信息熵、交叉熵、相对熵

okay!把这些看完之后,你对机器学习应该已经有了一个不错的了解!接下来我们可以进入具体算法的研究了…

先从监督学习开始吧!

不妨让线性回归成为第一个算法,这估计是最简单的一个算法了:
10. 新手向,线性回归算法原理一篇吃透!

接着我们可以学习一下 KNN,它是最简单的分类算法:
8. KNN 算法原理 & 实践一篇讲清!
里面 KD-tree 相关的部分如果看不懂可以先跳过。

接下来可以看一看朴素贝叶斯,核心公式只有一个,相对来讲是比较简单的:
5. 从概率到朴素贝叶斯算法,一篇带你看明白!

嗷,后面的部分会变得稍微难一些。

逻辑回归是用得很广的分类模型,公式比前面几个稍多一些,但难度不大:
14. 手撕公式,一篇带你理解逻辑回归!

从逻辑回归出发,我们可以拓展到更为一般化的最大熵原理:
23. 最大熵模型详解+推导来啦!解决 why sigmoid!

然后我们来看一个非常经典的分类模型,也是我学的第一个模型——支持向量机:
3. 支持向量机(SVM)一万字详解!超全超详细超易懂!
注意,支持向量机对偶问题那部分很难,可以 jump jump jump()

ok 呀,接下来我们进入树模型的部分,树模型是机器学习中很重要的组成部分。
first 是基础的决策树,比较直观,公式不难:
13. 决策树算法一万字详解!一篇带你看懂!

决策树之后就是绕不开的集成学习。这里可以先了解一下偏差—方差分解,理解集成学习出现的原因:
24. 从偏差—方差分解到集成学习!包全的!
其中的很多数学细节可以跳过。

然后可以分别学习 Bagging 和 Boosting。建议先学 Bagging,因为数学部分比较简单:
28. 集成学习之 Bagging & 随机森林!

然后是 Boosting:
25. AdaBoost 算法详解+推导来啦!
26. 梯度提升树 GBDT 超详细讲解!

oh,接下来就是更为进阶的主题了——概率图模型。
概率图模型可以分为贝叶斯网络和马尔可夫网络两个部分去学,建议先从贝叶斯网络开始:
27. 贝叶斯网络详解!超!系!统!
这个里面也写了概率图模型的介绍。

贝叶斯网络的一大实例是经典的标注算法隐马尔可夫模型:
20. 隐马尔可夫模型好难?看过来!(上篇)
21. 隐马尔可夫模型好难?看过来!(下篇)

学完贝叶斯网络,再来看看它的另一半——马尔可夫网络:
29. 马尔可夫随机场 2w 字详解!超!系!统!

条件随机场是马尔可夫网络的实例,也是经典的标注算法之一:
30. 理解条件随机场最清晰的思路!(上篇)
31. 理解条件随机场最清晰的思路!(下篇)

好耶!!学完这些,基本的监督学习算法你就已经全都 get 到啦!!!
接下来我们进入无监督学习吧!

无监督学习的算法相对少一些。
我们可以先了解一下几种经典的聚类算法,聚类比较简单,不涉及太多的数学:
19. 各种经典聚类算法,一篇带你过完!(上)

接下来我们来学习一个经典的降维算法——主成分分析。
降维算法的数学普遍比较复杂,如果觉得太难,可以适当跳过一些数学推导:
16. 线代小白也能看懂的矩阵奇异值分解!
17. 讲人话的主成分分析,它来了!(上篇)
18. 讲人话的主成分分析,它来了!(下篇)

无监督学习的基本算法其实也就这两个啦~

恭喜你!!!如果你看完了以上所有文章,你已经成功入门了机器学习!!

(再次撒花!)

嘿嘿~ 那对这个专栏的介绍就到这里啦~ 欢迎帮我宣传呀嘿嘿!!祝学习顺利!!❤~

Passion Is All You Need.

最后,这句话送给你,也送给我。

这篇文章介绍了整个专栏⭐。
欢迎三连!!一起加油!🎇
——Geeker_LStar

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/12990.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Got socket exception during request. It might be caused by SSL misconfiguration

引入xutils3依赖,结果包找不到 maven里面添加阿里云镜像 核心 maven { url uri("https://maven.aliyun.com/nexus/content/groups/public/") }repositories {google()maven { url uri("https://maven.aliyun.com/nexus/content/groups/public/"…

RocketMQ实战—4.消息零丢失的方案

大纲 1.全链路分析为什么用户支付完成后却没有收到红包 2.RocketMQ的事务消息机制实现发送消息零丢失 3.RocketMQ事务消息机制的底层实现原理 4.是否可以通过同步重试方案来代替事务消息方案来实现发送消息零丢失 5.使用RocketMQ事务消息的代码案例细节 6.同步刷盘Raft协…

【Elasticsearch】date range聚合

好的,继续之前的示例: json ] } } } } 4.3 自定义键(key) 通过为每个范围指定一个唯一的键(key),可以在结果中更方便地引用每个范围。这在使用keyed参数将结果以键值对形式返回时尤其有用。 j…

【R语言】获取数据

R语言自带2种数据存储格式:*.RData和*.rds。 这两者的区别是:前者既可以存储数据,也可以存储当前工作空间中的所有变量,属于非标准化存储;后者仅用于存储单个R对象,且存储时可以创建标准化档案&#xff0c…

[leetcode]双指针算法的使用

零.参考文章 双指针技术在数组和链表问题中的应用解析-CSDN博客 一.使用情况 双指针即是在有序数组的情况下,我们通过两个指针在遍历的过程中进行标记,对满足条件的进行处理,直至遍历完整个数组。 二.举个例子 2.1小人过河问题&#xff…

自指学习:AGI的元认知突破

文章目录 引言:从模式识别到认知革命一、自指学习的理论框架1.1 自指系统的数学定义1.2 认知架构的三重反射1.3 与传统元学习的本质区别二、元认知突破的技术路径2.1 自指神经网络架构2.2 认知效能评价体系2.3 知识表示的革命三、实现突破的关键挑战3.1 认知闭环的稳定性3.2 计…

C++ 入门速通-第5章【黑马】

内容来源于:黑马 集成开发环境:CLion 先前学习完了C第1章的内容: C 入门速通-第1章【黑马】-CSDN博客 C 入门速通-第2章【黑马】-CSDN博客 C 入门速通-第3章【黑马】-CSDN博客 C 入门速通-第4章【黑马】-CSDN博客 下面继续学习第5章&…

hot100(7)

61.31. 下一个排列 - 力扣(LeetCode) 数组问题,下一个更大的排列 题解:31. 下一个排列题解 - 力扣(LeetCode) (1)从后向前找到一个相邻的升序对(i,j),此时…

图像分类与目标检测算法

在计算机视觉领域,图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解,为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。 一、图像分类算法 图像分类是指将输入的图像划分为…

记录一次-Rancher通过UI-Create Custom- RKE2的BUG

一、下游集群 当你的下游集群使用Mysql外部数据库时,会报错: **他会检查ETCD。 但因为用的是Mysql外部数据库,这个就太奇怪了,而且这个检测不过,集群是咩办法被管理的。 二、如果不选择etcd,就选择控制面。 在rke2-…

SpringUI Web高端动态交互元件库

Axure Web高端动态交互元件库是一个专为Web设计与开发领域设计的高质量资源集合,旨在加速原型设计和开发流程。以下是关于这个元件库的详细介绍: 一、概述 Axure Web高端动态交互元件库是一个集成了多种预制、高质量交互组件的工具集合。这些组件经过精…

MySQL表的CURD

目录 一、Create 1.1单行数据全列插入 1.2多行数据指定列插入 1.3插入否则更新 1.4替换 2.Retrieve 2.1 select列 2.1.1全列查询 2.1.2指定列查询 2.1.3查询字段为表达式 2.1.4为查询结果指定别名 2.1.5结果去重 2.2where条件 2.3结果排序 2.4筛选分页结果 三…

文字加持:让 OpenCV 轻松在图像中插上文字

前言 在很多图像处理任务中,我们不仅需要提取图像信息,还希望在图像上加上一些文字,或是标注,或是动态展示。正如在一幅画上添加一个标语,或者在一个视频上加上动态字幕,cv2.putText 就是这个“文字魔术师”,它能让我们的图像从“沉默寡言”变得生动有趣。 今天,我们…

(9)gdb 笔记(2):查看断点 info b,删除断点 delete 3,回溯 bt,

(11) 查看断点 info b: # info b举例: (12)删除断点 delete 2 或者删除所有断点: # 1. 删除指定的断点 delete 3 # 2. 删除所有断点 delete 回车,之后输入 y 确认删除所有断点 举…

游戏引擎学习第88天

仓库:https://gitee.com/mrxiao_com/2d_game_2 调查碰撞检测器中的可能错误 在今天的目标是解决一个可能存在的碰撞检测器中的错误。之前有人提到在检测器中可能有一个拼写错误,具体来说是在测试某个变量时,由于引入了一个新的变量而没有正确地使用它&…

【2025】camunda API接口介绍以及REST接口使用(3)

前言 在前面的两篇文章我们介绍了Camunda的web端和camunda-modeler的使用。这篇文章主要介绍camunda结合springboot进行使用,以及相关api介绍。 该专栏主要为介绍camunda的学习和使用 🍅【2024】Camunda常用功能基本详细介绍和使用-下(1&…

Java高频面试之SE-17

hello啊,各位观众姥爷们!!!本牛马baby今天又来了!哈哈哈哈哈嗝🐶 Java缓冲区溢出,如何解决? 在 Java 中,缓冲区溢出 (Buffer Overflow) 虽然不是像 C/C 中那样直接可见…

用 Python 绘制爱心形状的简单教程

1. 引言 在本教程中,我们将学习如何使用 Python 和 Matplotlib 库来绘制一个简单的爱心形状。这是一个有趣且简单的项目,适合初学者练习图形绘制和数据可视化。 2. 环境准备 首先,确保您的系统上安装了 Python 和 Matplotlib 库。如果还未…

107,【7】buuctf web [CISCN2019 华北赛区 Day2 Web1]Hack World

这次先不进入靶场 看到红框里面的话就想先看看uuid是啥 定义与概念 UUID 是 Universally Unique Identifier 的缩写,即通用唯一识别码。它是一种由数字和字母组成的 128 位标识符,在理论上可以保证在全球范围内的唯一性。UUID 的设计目的是让分布式系…

Linux之安装MySQL

1、查看系统当前版本是多少位的 getconf LONG_BIT2.去官网下载对应的MYSQL安装包 这里下载的是8版本的,位数对应之前的64位 官网地址:https://downloads.mysql.com/archives/community/ 3.上传压缩包 4.到对应目录下解压 tar -xvf mysql-8.0.26-lin…