TensorFlow 03(Keras)

一、tf.keras

tf.keras是TensorFlow 2.0的高阶API接口,为TensorFlow的代码提供了新的风格和设计模式,大大提升了TF代码的简洁性和复用性,官方也推荐使用tf.keras来进行模型设计和开发。

1.1 tf.keras中常用模块

如下表所示:

1.2 常用方法

深度学习实现的主要流程:

1.数据获取,

2 数据处理,

3 模型创建与训练,

4 模型测试与评估,

5.模型预测

导入tf.keras

使用 tf.keras,首先需要在代码开始时导入tf.keras

import tensorflow as tf
from tensorflow import keras

数据输入

 对于小的数据集,可以直接使用numpy格式的数据进行训练、评估模型,对于大型数据集或者要进行跨设备训练时使用tf.data.datasets来进行数据输入。

模型构建

  • 简单模型使用Sequential进行构建
  • 复杂模型使用函数式编程来构建
  • 自定义layers

训练与评估

  • 配置训练过程
# 配置优化方法,损失函数和评价指标
model.compile(optimizer=tf.train.AdamOptimizer(0.001),loss='categorical_crossentropy',metrics=['accuracy'])
  • 模型训练
# 指明训练数据集,训练epoch,批次大小和验证集数据
model.fit/fit_generator(dataset, epochs=10, batch_size=3,validation_data=val_dataset,)
  • 模型评估
# 指明评估数据集和批次大小
model.evaluate(x, y, batch_size=32)
  • 模型预测
# 对新的样本进行预测
model.predict(x, batch_size=32)

回调函数(callbacks)

回调函数用在模型训练过程中,来控制模型训练行为,可以自定义回调函数,也可使用tf.keras.callbacks 内置的 callback :

ModelCheckpoint:定期保存 checkpoints。 LearningRateScheduler:动态改变学习速率。 EarlyStopping:当验证集上的性能不再提高时,终止训练。 TensorBoard:使用 TensorBoard 监测模型的状态。

模型的保存和恢复

  • 只保存参数
# 只保存模型的权重
model.save_weights('./my_model')
# 加载模型的权重
model.load_weights('my_model')
  • 保存整个模型
# 保存模型架构与权重在h5文件中
model.save('my_model.h5')
# 加载模型:包括架构和对应的权重
model = keras.models.load_model('my_model.h5')

二、keras构建模型

 

2.1 相关的库的导入

在这里使用sklearn和tf.keras完成鸢尾花分类,导入相关的工具包:

# 绘图
import seaborn as sns
# 数值计算
import numpy as np
# sklearn中的相关工具
# 划分训练集和测试集
from sklearn.model_selection import train_test_split
# 逻辑回归
from sklearn.linear_model import LogisticRegressionCV
# tf.keras中使用的相关工具
# 用于模型搭建
from tensorflow.keras.models import Sequential
# 构建模型的层和激活方法
from tensorflow.keras.layers import Dense, Activation
# 数据处理的辅助工具
from tensorflow.keras import utils

 

2.2 数据展示和划分

利用seborn导入相关的数据,iris数据以dataFrame的方式在seaborn进行存储,我们读取后并进行展示;

将数据划分为训练集和测试集:从iris dataframe中提取原始数据,将花瓣和萼片数据保存在数组X中,标签保存在相应的数组y中;

# 读取数据
iris = sns.load_dataset("iris")
# 展示数据的前五行
iris.head()# 花瓣和花萼的数据
X = iris.values[:, :4]
# 标签值
y = iris.values[:, 4]# 将数据集划分为训练集和测试集
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.5, test_size=0.5, random_state=0)

另外,利用seaborn中pairplot函数探索数据特征间的关系:

# 将数据之间的关系进行可视化
sns.pairplot(iris, hue='species')

2.3 sklearn实现

利用逻辑回归的分类器,并使用交叉验证的方法来选择最优的超参数,实例化LogisticRegressionCV分类器,并使用fit方法进行训练:

# 实例化分类器
lr = LogisticRegressionCV()
# 训练
lr.fit(train_X, train_y)# 计算准确率并进行打印
print("Accuracy = {:.2f}".format(lr.score(test_X, test_y)))Accuracy = 0.93

2.4 tf.keras实现

数据准备

在sklearn中我们只要实例化分类器并利用fit方法进行训练,最后衡量它的性能就可以了,那在tf.keras中与在sklearn非常相似,不同的是:

  • 构建分类器时需要进行模型搭建
  • 数据采集时,sklearn可以接收字符串型的标签,如:“setosa”,但是在tf.keras中需要对标签值进行热编码,如下所示:

有很多方法可以实现热编码,比如pandas中的get_dummies(),在这里我们使用tf.keras中的方法进行热编码:

# 进行热编码
def one_hot_encode_object_array(arr):# 去重获取全部的类别uniques, ids = np.unique(arr, return_inverse=True)# 返回热编码的结果return utils.to_categorical(ids, len(uniques))#对标签值进行热编码 
# 训练集热编码
train_y_ohe = one_hot_encode_object_array(train_y)
# 测试集热编码
test_y_ohe = one_hot_encode_object_array(test_y)

 

模型搭建

在sklearn中,模型都是现成的。tf.Keras是一个神经网络库,我们需要根据数据和标签值构建神经网络。

神经网络可以发现特征与标签之间的复杂关系。

神经网络是一个高度结构化的图,其中包含一个或多个隐藏层。

每个隐藏层都包含一个或多个神经元。

神经网络有多种类别,该程序使用的是密集型神经网络,也称为全连接神经网络:一个层中的神经元将从上一层中的每个神经元获取输入连接。例如,图 2 显示了一个密集型神经网络,其中包含 1 个输入层、2 个隐藏层以及 1 个输出层,如下图所示:

上图 中的模型经过训练并馈送未标记的样本时,它会产生 3 个预测结果:相应鸢尾花属于指定品种的可能性。对于该示例,输出预测结果的总和是 1.0。该预测结果分解如下:山鸢尾为 0.02,变色鸢尾为 0.95,维吉尼亚鸢尾为 0.03。这意味着该模型预测某个无标签鸢尾花样本是变色鸢尾的概率为 95%。

TensorFlow tf.keras API 是创建模型和层的首选方式。通过该 API,您可以轻松地构建模型并进行实验,而将所有部分连接在一起的复杂工作则由 Keras 处理。

tf.keras.Sequential 模型是层的线性堆叠。该模型的构造函数会采用一系列层实例;在本示例中,采用的是 2 个密集层(分别包含 10 个节点)以及 1 个输出层(包含 3 个代表标签预测的节点)。第一个层的 input_shape 参数对应该数据集中的特征数量:

# 利用sequential方式构建模型
model = Sequential([# 隐藏层1,激活函数是relu,输入大小有input_shape指定Dense(10, activation="relu", input_shape=(4,)),  # 隐藏层2,激活函数是reluDense(10, activation="relu"),# 输出层Dense(3,activation="softmax")
])

通过model.summary可以查看模型的架构:

Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 10)                50        
_________________________________________________________________
dense_1 (Dense)              (None, 10)                110       
_________________________________________________________________
dense_2 (Dense)              (None, 3)                 33        
=================================================================
Total params: 193
Trainable params: 193
Non-trainable params: 0
_________________________________________________________________             

激活函数可决定层中每个节点的输出形状。这些非线性关系很重要,如果没有它们,模型将等同于单个层。激活函数有很多,但隐藏层通常使用 ReLU

隐藏层和神经元的理想数量取决于问题和数据集。与机器学习的多个方面一样,选择最佳的神经网络形状需要一定的知识水平和实验基础。一般来说,增加隐藏层和神经元的数量通常会产生更强大的模型,而这需要更多数据才能有效地进行训练。

模型训练和预测

在训练和评估阶段,我们都需要计算模型的损失。这样可以衡量模型的预测结果与预期标签有多大偏差,也就是说,模型的效果有多差。我们希望尽可能减小或优化这个值,所以我们设置优化策略和损失函数,以及模型精度的计算方法:

# 设置模型的相关参数:优化器,损失函数和评价指标
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=["accuracy"])

接下来与在sklearn中相同,分别调用fit和predict方法进行预测即可。

# 模型训练:epochs,训练样本送入到网络中的次数,batch_size:每次训练的送入到网络中的样本个数
model.fit(train_X, train_y_ohe, epochs=10, batch_size=1, verbose=1);
  1. 迭代每个epoch。通过一次数据集即为一个epoch。
  2. 在一个epoch中,遍历训练 Dataset 中的每个样本,并获取样本的特征 (x) 和标签 (y)。
  3. 根据样本的特征进行预测,并比较预测结果和标签。衡量预测结果的不准确性,并使用所得的值计算模型的损失和梯度。
  4. 使用 optimizer 更新模型的变量。
  5. 对每个epoch重复执行以上步骤,直到模型训练完成。

与sklearn中不同,对训练好的模型进行评估时,与sklearn.score方法对应的是tf.keras.evaluate()方法,返回的是损失函数和在compile模型时要求的指标: 

# 计算模型的损失和准确率
loss, accuracy = model.evaluate(test_X, test_y_ohe, verbose=1)
print("Accuracy = {:.2f}".format(accuracy))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/131444.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ei Scopus检索 | 2024年第四届能源与环境工程国际会议(CoEEE 2024)

会议简介 Brief Introduction 2024年第四届能源与环境工程国际会议(CoEEE 2024) 会议时间:2023年5月22日-24日 召开地点:意大利米兰 大会官网:www.coeee.org CoEEE 2024将围绕“能源与环境工程”的最新研究领域而展开,为研究人员、…

VSCODE 使用技巧

vscode批量去掉代码中空行的方法 1、在vscode中使用ctrl f组合快捷键打开替换窗口. 2、输入下面的正则表达式 ^\s*(?\r?$)\n https://mp.weixin.qq.com/s/ZKV2sZWszxBLNTNLEWhsng

springboot redisTemplate.opsForValue().setIfAbsent返回null原理

一、版本 springboot版本:spring-boot-starter-data-redis 2.1.6 redisson版本:redisson-spring-boot-starter 3.11.5 二、场景 Boolean res redisTemplate.opsForValue().setIfAbsent("key","value");以上代码同一时间多次执行…

Sentinel控制台配置 持久化到nacos

sentinel控制台,使用方便,功能强大。使用官方的jar包,配置不会持久化,sentinel重启后会导致,之前的规则全部丢失,下面一起改造源码实现规则数据的持久化 sentinel源码地址 (github访问太慢&am…

嵌入式学习笔记(25)串口通信的基本原理

三根通信线:Tx Rx GND (1)任何通信都要有信息作为传输载体,或者有线的或则无线的。 (2)串口通信时有线通信,是通过串口线来通信的。 (3)串口通信最少需要2根&#xff…

MCU芯片测试:性能指标测试痛点是什么?ATECLOUD能否解决?

MCU芯片测试指标的核心是性能指标,包括处理器性能、存储器容量和读写速度,外设性能等。芯片测试对自动化测试的要求很高,ATECLOUD-IC不仅解决了传统测试方法的问题,而且也可以满足芯片测试的高要求,高效地完成MCU芯片性…

ChartJS使用-环境搭建(vue)

1、介绍 Chartjs简约不简单的JavaScript的图表库。官网https://chart.nodejs.cn/ Chart.js 带有内置的 TypeScript 类型,并与所有流行的 JavaScript 框架 兼容,包括 React 、Vue 、Svelte 和 Angular 。 你可以直接使用 Chart.js 或利用维护良好的封装程…

SpringBoot课堂笔记20230913

本篇文章为SpringBoot学习笔记,方便自己再复习。 Maven:jar包管理工具 注解: Controller:处理http请求,返回的视图 RestController: 相当于ResponseBody和Controller一起用,返回的是json ResponseBody:返回响应内容 …

自动化监控系统PrometheusGrafana

Prometheus 算是一个全能型选手,原生支持容器监控,当然监控传统应用也不是吃干饭的,所以就是容器和非容器他都支持,所有的监控系统都具备这个流程,数据采集→数据处理→数据存储→数据展示→告警 Prometheus 特点展开…

摩洛哥6.9级地震 网络出现轻度中断

北京时间2023年9月9日6时11分(当地时间8日23时11分),摩洛哥发生6.9级强震。埃文科技的监测数据显示,受地震影响,摩洛哥地区的网络也出现了轻度中断。 9月9日6时10分后,摩洛哥地区活跃前缀数量开始减少,在6时50分左右达…

利用 Python 中的地理空间数据与 GeoPandas

推荐:使用 NSDT编辑器快速搭建3D应用场景 空间数据的真正潜力在于它能够连接数据点及其各自的位置,为高级分析创造无限的可能性。地理空间数据科学是数据科学中的一个新兴领域,旨在利用地理空间信息并通过空间算法和机器学习或深度学习等先进…

算法通关村第十九关:白银挑战-动态规划高频问题

白银挑战-动态规划高频问题 1. 最少硬币数 LeetCode 322 https://leetcode.cn/problems/coin-change/description/ 思路分析 尝试用回溯来实现 假如coins[2,5,7],amount27,求解过程中,每个位置都可以从[2,5,7]中选择,因此可以…

error:Failed building wheel for XXX

解决方案适用于大多数的pip 安装时出现的Failed building wheel for XXX 出现问题 按以往快速安装包的经验,第一反应当然是使用简单又快捷的terminal命令加上镜像,如下: pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple结…

关闭训练过程中的wandb

训练的过程中反复提醒wandb的账户,自动化执行的话,不是很方便,因此需要关闭这个wandb的功能 提醒的方式是这样的: 解决办法1、注释掉wandb相关的代码,并且添加关闭命令:wandb None 参考: 训…

儿童折叠式和非折叠式椅子和凳子加拿大认证标准要求介绍 ASTM F2613-21

儿童折叠式和非折叠式椅子和凳子是带有刚性框架的座椅家具,用于支撑儿童的身体,使其可以直立或倾斜的姿势坐立或休息。 此次合规要求更新适用于儿童折叠式和非折叠式椅子和凳子。这类产品可以折叠起来,以便运输或储存。儿童椅是带有刚性框架的…

05JVM_类加载阶段

一、类加载阶段 1.加载 1.1介绍 ①Java源代码经编译生成字节码文件,通过类加载阶段将字节码载入方法区。 ②类加载阶段内部是C的instanceKlass描述java类,重要的域field有: _java_mirror,java类镜像。例如对String来说,就是St…

OpenCV(四十):图像分割—漫水填充

1.漫水填充原理 图像分割中的漫水填充(Flood Fill)算法是一种基于区域增长的像素分类方法。其原理是在图像中从种子点开始,逐渐向周围扩展,并根据一定的条件决定是否将相邻的像素归属于同一区域。 漫水填充的基本原理如下&#x…

通过数据模板自动生成表格table

1.数据模板中的主要几个参数需要注意下(需要加样式可自由设置参数): title:填入表格的内容 col:1,占一列,row: 3,占3行 align:center居中对齐, pdL:14,padding-left:14, bold:true,加粗 width:100&#xff…

第十五届全国大学生数学竞赛报名快要截止了,你报上名了吗?

关于组织参加 第十五届全国大学生数学竞赛的通知 01 为了培养人才、服务教学、提高大学生学习数学的兴趣,培养学生分析问题、解决问题的能力,发现和选拔数学创新人才,为学生提供一个展示基础知识和思维能力的舞台,我校决定组织参…

02目标检测-传统检测方法

目录 一、目标学习的检测方法变迁及对比 二、 基于传统手工特征的检测算法的定义 三、传统主要手工特征与算法 Haar特征与 人脸检测算法 - Viola-Jones(了解) HOG特征与 SVM 算法(了解)(行人检测、opencv实现) SIFT特征与SIFT算法(了解) DPM&#…