Python用正则化Lasso、岭回归预测房价、随机森林交叉验证鸢尾花数据可视化2案例|数据分享...

全文链接:https://tecdat.cn/?p=33632

机器学习模型的表现不佳通常是由于过度拟合或欠拟合引起的,我们将重点关注客户经常遇到的过拟合情况点击文末“阅读原文”获取完整代码数据)。

相关视频

过度拟合是指学习的假设在训练数据上拟合得非常好,以至于对新数据的模型性能造成负面影响。该模型对于训练数据中没有的新实例的泛化能力较差。

复杂模型,如随机森林、神经网络和XGBoost,更容易出现过度拟合。简单模型,如线性回归,也可能出现过度拟合——这通常发生在训练数据中的特征数量多于实例数量时。

如何检测过度拟合?

最基本的交叉验证实现类型是基于保留数据集的交叉验证。该实现将可用数据分为训练集和测试集。要使用基于保留数据集的交叉验证评估我们的模型,我们首先需要在保留集的训练部分上构建和训练模型,然后使用该模型对测试集进行预测,以评估其性能。

我们了解了过度拟合是什么,以及如何使用基于保留数据集的交叉验证技术来检测模型是否过度拟合。让我们获取一些数据,并在数据上实施这些技术,以检测我们的模型是否过度拟合。

python
# 导入库
import pandas as pdfrom sklearn.model_selection import train_test_split# 加载数据集
df = pd.DataFrame(data= dataset.data)# 将目标标签添加到数据框中
df["target"] = dataset.target# 分离特征和目标标签
X = df.iloc[:, :-1]# 分割训练集和测试集(基于保留数据集的交叉验证)
X_train, X_test, y_train, y_test = train_test_split(X, y,# 实例化模型
clf = RandomForestClassifier(random_state=24)# 绘制学习曲线
plot_learning_curves(X_train=X_train,y_train=y_train,

16bba0febd23288f7c94aa7a3d45e4f6.png

在上面的图片中,我们可以清楚地看到我们的随机森林模型对训练数据过度拟合。我们的随机森林模型在训练集上有完美的分类错误率,但在测试集上有0.05的分类错误率。这可以通过散点图上两条线之间的间隙来说明。


点击标题查阅往期内容

d866c7d7f2b17c27fda7a0ff5cf62846.png

PYTHON链家租房数据分析:岭回归、LASSO、随机森林、XGBOOST、KERAS神经网络、KMEANS聚类、地理可视化

outside_default.png

左右滑动查看更多

outside_default.png

01

155c6a7d953b350931c1e0e146e41494.png

02

8dcadc9d238201680e25c32368b116d2.png

03

7a749c7d2b98b221b4b2bc5d32715cc5.png

04

72affc435ab73f7c665d193944c1d5fa.png

另外,我们可以通过改进模型来对抗过度拟合。我们可以通过减少随机森林或XGBoost中的估计器数量,或者减少神经网络中的参数数量来简化模型。我们还可以引入一种称为“提前停止”的技术,即在达到设定的训练轮次之前提前停止训练过程。

另一种简化模型的方法是通过正则化向模型中添加偏差。

正则化是什么,为什么我们需要它?

正则化技术在机器学习模型的开发中起着至关重要的作用。尤其是复杂模型,如神经网络,容易过拟合训练数据。从数学或机器学习的角度来看,"regularize"一词表示我们正在使某个东西规则化。在数学或机器学习的上下文中,我们通过添加信息来使某个东西规则化,以创建一个可以防止过拟合的解决方案。在我们的机器学习上下文中,我们要使某个东西规则化的是"目标函数",即我们在优化问题中尝试最小化的东西。

优化问题

为了获得我们模型的"最佳"实现,我们可以使用优化算法来确定最大化或最小化目标函数的一组输入。通常,在机器学习中,我们希望最小化目标函数以降低模型的误差。这就是为什么目标函数在从业者中被称为损失函数的原因,但也可以称为成本函数。

有大量流行的优化算法,包括:

  • 斐波那契搜索

  • 二分法

  • 线性搜索

  • 梯度下降

  • ...等等

没有正则化的梯度下降

梯度下降是一种一阶优化算法。它涉及采取与梯度相反方向的步骤,以找到目标函数的全局最小值(或非凸函数的局部最小值)。

要用数学方式表达梯度下降的工作原理,假设N是观测值的数量,Y_hat是实例的预测值,Y是实例的实际值。

262da515a2e6feabe59cc3c2c1a29eb6.png

为了确定要采取的步长(大小)以及方向,我们计算:

84318575435e59b4425f753dfd2c3b73.png

其中η是学习率 - 学习率是优化算法中的一个调节参数,它确定每次迭代时向最小损失函数的最小值移动的步长[来源: Wikipedia]。然后,在每次迭代之后,更新模型的权重,更新规则如下:

d5e346b0f1b7d97347dce3f482935940.png

其中Δw是一个包含每个权重系数w的权重更新的向量。下面的函数演示了如何在Python中实现不带任何正则化的梯度下降优化算法。

为了更好地理解这一点,让我们构建一个人工数据集和一个没有正则化的线性回归模型来预测训练数据。

python
# 导入所需模块import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error# 加载数据df = pd.read_csv# 选择一个特征
# 为了简单起见,只使用100个实例
X = df.loc[:100, 5]
y = df.loc[:100, 13] # 目标标签# 重塑数据
X_reshaped = X[:, np.newaxis]
y_reshaped = y[:, np.newaxis]# 实例化线性回归模型
linear_regression = LinearRegression()# 训练模型
linea# 进行预测
y_p# 评估模型
mse = mea_squared_rrr(_esaped y_red)
print(f"均方误差:{mse}\n")# 绘制最佳拟合线
sns.sca
plt.title("无正则化的线性回归模型")>>>> 均方误差:9.7

f2c74a44fb527669e7bca67da7671295.png

L1 正则化

L1 正则化,也被称为 L1 范数或 Lasso(在回归问题中),通过将参数收缩到0来防止过拟合。这使得某些特征变得不相关。

例如,假设我们想使用机器学习来预测房价查看文末了解数据免费获取方式。考虑以下特征:

  • Street – 道路通行能力,

  • Neighborhood – 物业位置,

  • Accessibility – 交通便利程度,

  • Year Built – 房屋建造年份,

  • Rooms – 房间数量,

  • Kitchens – 厨房数量,

  • Fireplaces – 房屋中的壁炉数量。

当预测房屋价值时,直觉告诉我们不同的输入特征对价格的影响不同。例如,与壁炉数量相比,社区或房间数量对房价的影响更大。

数学上,我们通过扩展损失函数来表达 L1 正则化:

d89a52558957499ada3b3c1cc5a53580.png

实质上,当我们使用L1正则化时,我们对权重的绝对值进行惩罚。

尽管如此,在我们的示例回归问题中,Lasso回归(带有L1正则化的线性回归)将产生一个高度可解释的模型,并且只使用了输入特征的子集,从而降低了模型的复杂性。

以下是Python中使用Lasso回归的示例代码:

python
import warnings
warnings.filterwarnings("ignore")import numpy as npfrom sklearn.metrics import mean_squared_error# 加载数据df = pd.read_csv(URL, header=None)# 选择单个特征(为简单起见,仅使用100个实例)
y = df.loc[:100, 13] # 目标标签 # 重塑数据
y_reshaped = y[:, np.newaxis]# 实例化Lasso回归模型
lasso = Lasso# 训练模型
lassped)# 进行预测
y_predict(X_eshed)# 评估模型
print(f"均方误差:{mse}")
print(f"模型系数:{lasso.coef_}\n")# 绘制最佳拟合线
plt.title("带有L1正则化的线性回归模型(Lasso)")
plt.show()

输出结果为:

均方误差:34.7
模型系数:[0.]

9d89a637fa275391c5ca807bcd1b83d5.png

L2正则化

L2正则化,也被称为L2范数或Ridge(在回归问题中),通过将权重强制变小来防止过拟合,但不会使其完全为0。

在执行L2正则化时,我们在损失函数中添加的正则化项是所有特征权重的平方和:

06332fd928acd7afe6c59026bed063cd.png

L2正则化返回的解决方案是非稀疏的,因为权重不会为零(尽管某些权重可能接近于0)。

L1正则化和L2正则化的区别:

  • L1正则化对权重的绝对值之和进行惩罚,而L2正则化对权重的平方和进行惩罚。

  • L1正则化的解是稀疏的,而L2正则化的解是非稀疏的。

  • L2正则化不进行特征选择,因为权重只会被减小到接近于0的值,而不是变为0。L1正则化内置了特征选择功能。

  • L1正则化对异常值具有鲁棒性,而L2正则化没有。

Python中Ridge回归的示例代码:

pythonfrom sklearn.linear_model import LinearRegression, Lasso, Ridge
from sklearn.metrics import mean_squared_error# 加载数据df = pd.read_csv(URL, header=None)# 为简单起见,选择一个特征和100个实例
y = df.loc[:100, 13] # 目标标签# 重塑数据
X_reshaped = X[:, np.newaxis]# 实例化、训练和推断
ridge = Rdge(apha=100)print(f"均方误差:{mse}")
print(f"模型系数:{ridge.coef_}\n")sns.scatterplot(X,y)
plt.title("带有L2正则化(Ridge)的线性回归模型")
plt.show()>>>> 均方误差:25.96309109305436
模型系数:[[1.98542524]]

491978d0e1a83454d3968f08cdc26f01.png

观察Ridge回归模型中的alpha值,它为100。超参数alpha值越大,权重值越接近于0,但不会变为0。

L1正则化和L2正则化哪个更好?

哪种正则化方法更好是一个供学者们争论的问题。然而,作为实践者,在选择L1和L2正则化之间需要考虑一些重要因素。我将它们分为6个类别,并告诉你每个类别哪个解决方案更好。

哪个解决方案更鲁棒?L1

L1正则化比L2正则化更具鲁棒性,原因是L2正则化对权重进行平方处理,因此数据中的异常值的代价呈指数增长。L1正则化对权重取绝对值,所以代价只会线性增长。

哪个解决方案具有更多可能性?L1

我指的是到达一个点的解决方案的数量。L1正则化使用曼哈顿距离到达一个点,所以有很多路线可以走到达一个点。L2正则化使用欧几里得距离,这将告诉您最快到达某个点的方法。这意味着L2范数只有一个可能的解决方案。

如前所述,L2正则化仅将权重缩小到接近于0的值,而不是真正变为0。另一方面,L1正则化将值收缩到0。这实际上是一种特征选择的形式,因为某些特征完全从模型中删除了。

总结

在本文中,我们探讨了过拟合是什么,如何检测过拟合,损失函数是什么,正则化是什么,为什么需要正则化,L1和L2正则化的工作原理以及它们之间的区别。

数据获取

在公众号后台回复“房价”,可免费获取完整数据。

883be6400ffed9795403936fb232bbda.jpeg

本文中分析的房价数据分享到会员群,扫描下面二维码即可加群!

a9782a5a6ed645e7ca437d825f54ab52.png

0e7406ad9537b9bd724250c22d4dc3fd.jpeg

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《Python用正则化Lasso、岭回归预测房价、随机森林交叉验证鸢尾花数据可视化2案例》。

1b090dd2891539a47ba6053f122bf4e3.jpeg

bf83efdfcfb34f446093abadc5b5ce45.png

点击标题查阅往期内容

R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据

Python中的Lasso回归之最小角算法LARS

高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据

Python高维变量选择:SCAD平滑剪切绝对偏差惩罚、Lasso惩罚函数比较

R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例

R使用LASSO回归预测股票收益

广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证

贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)

Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例

R语言Bootstrap的岭回归和自适应LASSO回归可视化

R语言Lasso回归模型变量选择和糖尿病发展预测模型

R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析

基于R语言实现LASSO回归分析

R语言用LASSO,adaptive LASSO预测通货膨胀时间序列

R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析

R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例

Python中的Lasso回归之最小角算法LARS

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现

R语言实现LASSO回归——自己编写LASSO回归算法

R使用LASSO回归预测股票收益

python使用LASSO回归预测股票收益

Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例

R语言Bootstrap的岭回归和自适应LASSO回归可视化

R语言Lasso回归模型变量选择和糖尿病发展预测模型

R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析

基于R语言实现LASSO回归分析

R语言用LASSO,adaptive LASSO预测通货膨胀时间序列

R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析

R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例

Python中的Lasso回归之最小角算法LARS

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现

R语言实现LASSO回归——自己编写LASSO回归算法

R使用LASSO回归预测股票收益

python使用LASSO回归预测股票收益

R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析

数据分享|R语言逻辑回归、线性判别分析LDA、GAM、MARS、KNN、QDA、决策树、随机森林、SVM分类葡萄酒交叉验证ROC

MATLAB随机森林优化贝叶斯预测分析汽车燃油经济性

R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数

R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病

R语言中贝叶斯网络(BN)、动态贝叶斯网络、线性模型分析错颌畸形数据

R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归

Python贝叶斯回归分析住房负担能力数据集

R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析

Python用PyMC3实现贝叶斯线性回归模型

R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型

R语言Gibbs抽样的贝叶斯简单线性回归仿真分析

R语言和STAN,JAGS:用RSTAN,RJAG建立贝叶斯多元线性回归预测选举数据

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言贝叶斯线性回归和多元线性回归构建工资预测模型

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

R语言stan进行基于贝叶斯推断的回归模型

R语言中RStan贝叶斯层次模型分析示例

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型

WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较

R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

视频:R语言中的Stan概率编程MCMC采样的贝叶斯模型

R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计

R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据

R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析

R语言基于Bagging分类的逻辑回归(Logistic Regression)、决策树、森林分析心脏病患者

R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化

c8df1f680137b4ebb79620d0d3c66154.png

736467fcedc31304a8971b9d45797bcf.jpeg

78b4c1007139f049ecf5cb2b6ce3c492.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/134208.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL数据库upsert使用

本文翻译自:MySQL UPSERT - javatpoint,并附带自己的一些理解和使用经验. MySQL UPSERT UPSERT是数据库管理系统管理数据库的基本功能之一,它允许数据库操作语言在表中插入一条新的数据或更新已有的数据。UPSERT是一个原子操作,…

git 远程名称 远程分支 介绍

原文: 开发者社区> 越前君> 细读 Git | 让你弄懂 origin、HEAD、FETCH_HEAD 相关内容 读书笔记:担心大佬文章搬家,故整理此学习笔记 远程名称(Remote Name) Origin 1、 origin 只是远程仓库的一个名称&#xff…

浅谈C++|类的继承篇

引子: 继承是面向对象三大特性之一、有些类与类之间存在特殊的关系,例如下图中: 我们发现,定义这些类时,下级别的成员除了拥有上一级的共性,还有自己的特性。 这个时候我们就可以考虑利用继承的技术,减少…

【Selenium】webdriver.ChromeOptions()官方文档参数

Google官方Chrome文档,在此记录一下 Chrome Flags for Tooling Many tools maintain a list of runtime flags for Chrome to configure the environment. This file is an attempt to document all chrome flags that are relevant to tools, automation, benchm…

竞赛 基于机器视觉的行人口罩佩戴检测

简介 2020新冠爆发以来,疫情牵动着全国人民的心,一线医护工作者在最前线抗击疫情的同时,我们也可以看到很多科技行业和人工智能领域的从业者,也在贡献着他们的力量。近些天来,旷视、商汤、海康、百度都多家科技公司研…

红外检漏技术

SF6气体绝缘设备发生泄漏后会造成运行开关闭锁、 内部绝缘击穿, 泄漏到空气中会造成环境污染, 并严重危害现场人员安全。 再加之SF6气体成本高, 频繁补气, 使维护成本增加, 造成经济损失。 红外检漏是依据SF6气体对红外…

EasyUI combobox 实现搜索(模糊匹配)功能

很简单的一个下拉框搜索模糊匹配功能&#xff0c;在此记录&#xff1a; 1&#xff1a;页面实现&#xff1a; <select class"easyui-combobox" name"combobox" id"combobox" style"width:135px;height:25px;" headerValue"请选…

LeetCode142.环形链表-II

这道题和上一道题几乎没有任何区别啊&#xff0c;为什么还是中等难度&#xff0c;我用上一道题的解法一分钟就写出来了&#xff0c;只不过返回的不是true和false而是节点&#xff0c;以下是我的代码&#xff1a; public class Solution {public ListNode detectCycle(ListNode…

推荐一款负载均衡器,助你轻松管理多个 Socks5 代理

推荐一款负载均衡器&#xff0c;助你轻松管理多个 Socks5 代理。 推荐一个 GitHub 开源项目 mingcheng/socks5lb&#xff0c;该项目在 GitHub 有超过 400 Star&#xff0c;用一句话介绍该项目就是&#xff1a;“A simple socks5 proxy load balance and transparent proxy”&a…

1131. 绝对值表达式的最大值

1131. 绝对值表达式的最大值 原题链接&#xff1a;完成情况&#xff1a;解题思路&#xff1a;求方向一次遍历两度统计 参考代码&#xff1a;求方向一次遍历两度统计 原题链接&#xff1a; 1131. 绝对值表达式的最大值 https://leetcode.cn/problems/maximum-of-absolute-val…

【CCF】第30次csp认证——202305-1重复局面

202305-1重复局面&#xff1a; 问题描述 国际象棋每一个局面可以用大小为 88 的字符数组来表示&#xff0c;其中每一位对应棋盘上的一个格子。六种棋子王、后、车、象、马、兵分别用字母 k、q、r、b、n、p 表示&#xff0c;其中大写字母对应白方、小写字母对应黑方。棋盘上无…

iOS开发之编译OpenSSL静态库

项目审查发现OpenSSL1.0.2d有漏洞&#xff0c;所以需要升级更新OpenSSL版本&#xff0c;借此机会&#xff0c;记录一下编译OpenSSL静态库的流程。 Xcode使用的是14.2&#xff0c;OpenSSL使用的是1.0.2u、1.1.1u&#xff0c;由于是对两个不同版本进行的编译操作&#xff0c;所以…

Linux下安装和使用MySQL的详细教程

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

js中如何获取当前页面的URL参数值?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 获取当前页面的URL参数值⭐ 解析查询字符串⭐ 使用正则表达式解析参数值⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&am…

LC142. 环形链表 II

题目大意 给你一个链表&#xff0c;要求判断是否有环&#xff0c;若有环&#xff0c;找出环的入口结点。 142. 环形链表 II 判断是否有环 判环比较简单&#xff0c;用一个一次走一个结点的快指针&#xff0c;和一个一次走一个结点的慢指针同时遍历链表&#xff0c;若两指针相…

第一颗国产 单/双端口 MIPI CSI/DSI 至 HDMI 1.4 发射器 芯片LT9611

1. 描述 LT9611 MIPI DSI/CSI 至 HDMI1.4 桥接器具有双端口 MIPI D-PHY 接收器前端配置&#xff0c;每个端口有 4 个数据通道&#xff0c;每个数据通道以 2Gbps 的速度工作&#xff0c;最大输入带宽为 16Gbps。 该桥接器提供一个 HDMI 数据输出&#xff0c;具有可选的 …

8位和32位单片机如何选择适合,以及主要区别!

单片机直接影响到项目的成功和性能&#xff0c;我们将分享如何选择适合您的应用的8位或32位单片机。 8位单片机 vs. 32位单片机&#xff1a; 一、性能和处理能力&#xff1a; 8位单片机&#xff1a; 8位单片机通常适用于相对简单的应用&#xff0c;如传感器控制、LED显示、小…

【论文笔记】Perception, Planning, Control, and Coordination for Autonomous Vehicles

单纯作为阅读笔记&#xff0c;文章内容可能有些混乱。 文章目录 1. Introduction2. Perception3. Planning3.1. Autonomous Vehicle Planning Systems3.2. Mission Planning3.3. Behavioral Planning3.4. Motion Planning3.4.1. Combinatorial Planning3.4.2. Sampling-Based P…

JavaWeb基础学习(5)

JavaWeb基础学习 一、Filter1.1 Filter介绍1.2 Filter快速入门1.3、Filter执行流程1.4、Filter使用细节1.5、Filter-案例-登陆验证 二、Listener2.1 Listener介绍2.2、ServletContextListener使用 三、AJAX3.1 AJAX介绍与概念3.2 AJAX快速入门3.3 Axios异步架构3.4 JSON-概述和…

[管理与领导-96]:IT基层管理者 - 扩展技能 - 5 - 职场丛林法则 -10- 七分做,三分讲,完整汇报工作的艺术

目录 前言&#xff1a; 一、汇报工作的重要性 1.1 汇报的重要性&#xff1a;汇报工作是工作重要的一环 1.2 向上司汇报工作状态具有重要的意义 1.2 汇报工作存在一些误解 1.3 汇报工作中的下错误做法 1.4 汇报工作与做实际工作的关系 二、工作汇报的内容与艺术 2.1 工…