10. 神经网络(二.多层神经网络模型)

多层神经网络(Multi-Layer Neural Network),也称为深度神经网络(Deep Neural Network, DNN),是机器学习中一种重要的模型,能够通过多层次的非线性变换解决复杂的分类、回归和模式识别问题。以下是其详细介绍:


1. 基本概念

多层神经网络由多个层(Layer)堆叠而成,包括:

  • 输入层(Input Layer):接收原始数据(如图像像素、文本向量等)。

  • 隐藏层(Hidden Layers):介于输入层和输出层之间,负责特征提取和抽象。

  • 输出层(Output Layer):生成最终预测结果(如分类标签、回归值)。

每一层由多个神经元(Neuron)组成,神经元之间通过权重(Weight)连接,并通过激活函数(Activation Function)引入非线性。


2. 核心结构

(1)前向传播(Forward Propagation)

数据从输入层逐层传递到输出层:

  1. 输入数据 xx 经过线性变换(权重 WW 和偏置 bb)和非线性激活函数。

  2. 每层的输出公式:

    a(l)=f(W(l)a(l−1)+b(l))a(l)=f(W(l)a(l−1)+b(l))

    其中 f(⋅)f(⋅) 是激活函数,ll 表示层数。

(2)激活函数(Activation Function)
  • 作用:引入非线性,使网络能够学习复杂模式。

  • 常见类型

    • Sigmoid:将输入压缩到 (0,1),适用于二分类输出层。

    • ReLU(Rectified Linear Unit):f(x)=max⁡(0,x)f(x)=max(0,x),缓解梯度消失问题,广泛用于隐藏层。

    • Softmax:将输出转化为概率分布,适用于多分类输出层。

(3)反向传播(Backpropagation)

通过梯度下降优化权重:

  1. 计算损失函数(Loss Function):如均方误差(MSE)或交叉熵(Cross-Entropy)。

  2. 链式法则计算梯度:从输出层反向传播误差,调整每层的权重和偏置。

  3. 参数更新:使用优化器(如SGD、Adam)更新参数。


3. 多层神经网络的优点

  1. 特征自动学习:无需手动设计特征,隐藏层逐层提取高阶抽象特征。

  2. 强大的表达能力:理论上可以逼近任何连续函数(万能近似定理)。

  3. 适应复杂任务:如图像识别(CNN)、自然语言处理(RNN)、语音识别等。


4. 常见类型

  1. 全连接网络(Fully Connected Network, FCN)

    • 每层神经元与下一层全部连接,参数量大。

  2. 卷积神经网络(CNN)

    • 通过卷积核提取局部特征,适合图像数据。

  3. 循环神经网络(RNN)

    • 处理序列数据(如文本、时间序列),具有记忆能力。

  4. Transformer

    • 基于自注意力机制,擅长长距离依赖建模(如BERT、GPT)。


5. 训练中的挑战

  1. 梯度消失/爆炸

    • 深层网络中梯度可能指数级缩小或增大。

    • 解决方案:ReLU、Batch Normalization、残差连接(ResNet)。

  2. 过拟合

    • 模型在训练集表现好,但泛化能力差。

    • 解决方案:Dropout、正则化(L1/L2)、数据增强。

  3. 计算资源需求

    • 训练深层网络需要大量GPU算力和内存。


6. 应用场景

  • 计算机视觉:图像分类、目标检测(YOLO、ResNet)。

  • 自然语言处理:机器翻译(Transformer)、情感分析。

  • 推荐系统:用户行为预测。

  • 强化学习:游戏AI(AlphaGo)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/13541.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

足球俱乐部管理系统的设计与实现

🍅点赞收藏关注 → 添加文档最下方联系方式咨询本源代码、数据库🍅 本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目希望你能有所收获,少走一些弯路。🍅关注我不迷路🍅 项目视频 足…

tolua[一]框架搭建,运行example

一.安装tolua https://github.com/topameng/tolua 下载LuaFramework_UGUI的zip 将Assets目录拷贝到项目根目录下 提示确认注册,遇到这个对话框点确定即可 生成如下目录 二.LuaFramework->Build Windows Resource 接下来的目标是将这个main场景跑起来 需要先执行…

JVM图文入门

往期推荐 【已解决】redisCache注解失效,没写cacheConfig_com.howbuy.cachemanagement.client.redisclient#incr-CSDN博客 【已解决】OSS配置问题_keyuewenhua.oss-cn-beijing.aliyuncs-CSDN博客 【排坑】云服务器docker部署前后端分离项目域名解析OSS-CSDN博客 微服…

Day37-【13003】短文,串的基本概念,匹配算法,算法时间复杂度,真题训练

文章目录 第二节 串串的基本概念串的模式匹配朴素的模式匹配算法(BF算法)算法最坏时间复杂度O(n x m) 改进的模式匹配算法(KMP算法)特征向量next,来确定k值特征向量next的算法实现 算法最坏时间复杂度O(n)进一步改进next值的计算,简化步骤 第四章真题真题…

GPU-Z重磅更新,Blackwell架构全面支持

由TechPowerUp倾力打造的GPU-Z,是一款集显卡信息查看、实时监控与深度诊断于一体的强大工具。它以其轻巧灵便的体积、完全免费的使用模式以及极其友好的操作界面,赢得了全球无数用户的青睐与信任,成为PC硬件领域中不可或缺的软件。 GPU-Z不仅…

leetCode刷题-图、回溯相关

岛屿数量 class Solution { private:int mi;int mj; public:int numIslands(vector<vector<char>>& grid) {mi grid.size() - 1; // i的范围 0~mimj grid[0].size() - 1; // j的范围 0~mjint landnum 0;bool sea false;do {pair<int, int> res …

VMware Win10下载安装教程(超详细)

《网络安全自学教程》 从MSDN下载系统镜像&#xff0c;使用 VMware Workstation 17 Pro 安装 Windows 10 consumer家庭版 和 VMware Tools。 Win10下载安装 1、下载镜像2、创建虚拟机3、安装操作系统4、配置系统5、安装VMware Tools 1、下载镜像 到MSDN https://msdn.itellyou…

基础篇05-直方图操作

本节将简要介绍Halcon中有关图像直方图操作的算子&#xff0c;重点介绍直方图获取和显示两类算子&#xff0c;以及直方图均衡化处理算子。 目录 1. 引言 2. 获取并显示直方图 2.1 获取&#xff08;灰度&#xff09;直方图 (1) gray_histogram (2) gray_histo_abs (3) gr…

Oracle(windows安装遇到的ORA-12545、ORA-12154、ORA-12541、ORA-12514等问题)

其实出现该问题就是监听或者服务没有配好。 G:\xiaowangzhenshuai\software\Oracle\product\11.2.0\dbhome_1\NETWORK\ADMINlistener.ora SID_LIST_LISTENER (SID_LIST (SID_DESC (SID_NAME CLRExtProc)(ORACLE_HOME G:\xiaowangzhenshuai\software\Oracle\product\11.2.0\d…

LabVIEW2025中文版软件安装包、工具包、安装教程下载

下载链接&#xff1a;LabVIEW及工具包大全-三易电子工作室http://blog.eeecontrol.com/labview6666 《LabVIEW2025安装图文教程》 1、解压后&#xff0c;双击install.exe安装 2、选中“我接受上述2条许可协议”&#xff0c;点击下一步 3、点击下一步&#xff0c;安装NI Packa…

在本地顺利的部署一个al模型从零开始 windows

引言 &#xff08;踩的坑&#xff0c;省流引言的内容没有有使模型跑起来&#xff09; 最近想在本地部署一个deepseek模型&#xff0c;就在网上搞了3 4天终于是能够部署下来了&#xff0c;在部署的时候也是成功的踩了无数的坑&#xff0c;比如我先问al如何在本地部署一个语言模…

基于ansible部署elk集群

ansible部署 ELK部署 ELK常见架构 &#xff08;1&#xff09;ElasticsearchLogstashKibana&#xff1a;这种架构是最常见的一种&#xff0c;也是最简单的一种架构&#xff0c;这种架构通过Logstash收集日志&#xff0c;运用Elasticsearch分析日志&#xff0c;最后通过Kibana中…

Linux学习笔记16---高精度延时实验

延时函数是很常用的 API 函数&#xff0c;在前面的实验中我们使用循环来实现延时函数&#xff0c;但是使用循环来实现的延时函数不准确&#xff0c;误差会很大。虽然使用到延时函数的地方精度要求都不会很严格( 要求严格的话就使用硬件定时器了 ) &#xff0c;但是延时函数肯定…

Linux系统 环境变量

环境变量 写在前面概念查看环境变量main函数的参数argc & argvenv bash环境变量 写在前面 对于环境变量&#xff0c;本篇主要介绍基本概念及三四个环境变量 —— PATH、HOME、PWD。其中 PATH 作为 “ 敲门砖 ”&#xff0c;我们会更详细讲解&#xff1b;理解环境变量的全局…

旋转变压器工作及解调原理

旋转变压器 旋转变压器是一种精密的位置、速度检测装置&#xff0c;广泛应用在伺服控制、机器人、机械工具、汽车、电力等领域。但是&#xff0c;旋转变压器在使用时并不能直接提供角度或位置信息&#xff0c;需要特殊的激励信号和解调、计算措施&#xff0c;才能将旋转变压器…

【漫话机器学习系列】076.合页损失函数(Hinge Loss)

Hinge Loss损失函数 Hinge Loss&#xff08;合页损失&#xff09;&#xff0c;也叫做合页损失函数&#xff0c;广泛用于支持向量机&#xff08;SVM&#xff09;等分类模型的训练过程中。它主要用于二分类问题&#xff0c;尤其是支持向量机中的优化目标函数。 定义与公式 对于…

基于docker搭建Kafka集群,使用KRaft方式搭建,摒弃Zookeeper

KAFKA基于docker使用KRaft进行集群搭建 环境&#xff1a;已成功搭建kafka服务 可点击链接跳转至安装kafka-3.8.0版本 并启用SASL认证 教程 使用基于Zookeeper方式搭建集群教程 kafka-3.8.0版本 并启用SASL认证 教程 搭建kafka-ui可视化工具 192.168.2.91 192.168.2.92 192…

Go 语言 | 入门 | 快速入门

快速入门 1.第一份代码 先检查自己是否有正确下载 Go&#xff0c;如果没有直接去 Go 安装 进行安装。 # 检查是否有 Go $ go version go version go1.23.4 linux/amd64然后根据 Go 的入门教程 开始进行学习。 # 初始化 Go 项目 $ mkdir example && cd example # Go…

凝思60重置密码

凝思系统重置密码 - 赛博狗尾草 - 博客园 问题描述 凝思系统进入单用户模式&#xff0c;在此模式下&#xff0c;用户可以访问修复错误配置的文件。也可以在此模式下安装显卡驱动&#xff0c;解决和已加载驱动的冲突问题。 适用范围 linx-6.0.60 linx-6.0.80 linx-6.0.100…

HTML 复习

文章目录 路径问题标题标签段落标签换行标签列表标签<ol> 有序列表<ul> 无序标签标签嵌套 超链接标签多媒体标签<img> 图片标签<audio> 音频标签<video> 视频标签 表格标签<colspan> 跨行<rowspan> 跨列组合使用 表单标签基本表单标…