Redis缓存相关问题

目录

缓存穿透

缓存雪崩

缓存击穿

Redis集群方案

主从复制Replication

哨兵sentinel

高可用介绍

Redis sentinel介绍

Redis sentinel使用

配置sentinel

启动sentinel

测试sentinel

Redis内置集群cluster

Redis cluster介绍

哈希槽方式分配数据

Redis cluster的主从模式

Redis cluster搭建

准备Redis节点

启动Redis集群

使用Redis集群


缓存穿透

缓存穿透是指查询一个数据库一定不存在的数据。

以前正常的使用Redis缓存的流程大致是:

1、数据查询首先进行缓存查询

2、如果数据存在则直接返回缓存数据

3、如果数据不存在,就对数据库进行查询,并把查询到的数据放进缓存

4、如果数据库查询数据为空,则不放进缓存

例如我们的数据表中主键是自增产生的,所有的主键值都大于0。此时如果用户传入的参数为-1,会是怎么样?

这个-1,就是一定不存在的对象。程序就会每次都去查询数据库,而每次查询都是空,每次又都不会进行缓存。假如有人恶意攻击,就可以利用这个漏洞,对数据库造成压力,甚至压垮我们的数据库。

为了防止有人利用这个漏洞恶意攻击数据库,可以采取如下措施

如果从数据库查询的对象为空,也放入缓存,key为用户提交过来的主键值,value为null,只是设定的缓存过期时间较短,比如设置为60秒。这样下次用户再根据这个key查询redis缓存就可以查询到值了(当然值为null),从而保护数据库免遭攻击。  

缓存雪崩

缓存雪崩,是指在某一个时间段,缓存集中过期失效。在缓存集中失效的这个时间段对数据的访问查询,都落到了数据库上,对于数据库而言,就会产生周期性的压力波峰。  

为了避免缓存雪崩的发生,可以将缓存的数据设置不同的失效时间,这样就可以避免缓存数据在某个时间段集中失效。例如对于热门的数据(访问频率高的数据)可以缓存的时间长一些,对于冷门的数据可以缓存的时间短一些。甚至对于一些特别热门的数据可以设置永不过期。  

缓存击穿

缓存击穿,是指一个key非常热点(例如双十一期间进行抢购的商品数据),在不停的扛着大并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求到数据库上,就像在一个屏障上凿开了一个洞。  

同样可以将这些热点数据设置永不过期就可以解决缓存击穿的问题了。

Redis集群方案

单机Redis的读写速度非常快,能够支持大量用户的访问。虽然Redis的性能很高,但是对于大型网站来说,每秒需要获取的数据远远超过单台redis服务所能承受的压力,所以迫切需要一种方案能够解决单台Redis服务性能不足的问题。这就需要使用到Redis的集群了。  

主从复制Replication

redis支持主从复制模式

在主从复制模式下Redis节点分为两种角色:主节点(也称为master)和从节点(也称为slave)。这种模式集群是由一个主节点和多个从节点构成。

原则:Master会将数据同步到slave,而slave不会将数据同步到master。Slave启动时会连接master来同步数据。

 

这是一个典型的分布式读写分离模型。可以利用master来处理写操作,slave提供读操作。这样可以有效减少单个机器的并发访问数量。  

要实现主从复制这种模式非常简单,主节点不用做任何修改,直接启动服务即可。从节点需要修改redis.conf配置文件,加入配置:slaveof <主节点ip地址> <主节点端口号>,例如master的ip地址为192.168.200.129,端口号为6379,那么slave只需要在redis.conf文件中配置slaveof 192.168.200.129 6379即可。  

分别连接主节点和从节点,测试发现主节点的写操作,从节点立刻就能看到相同的数据。但是在从节点进行写操作,提示 READONLY You can't write against a read only slave 不能写数据到从节点。

哨兵sentinel

给Redis实现了主从复制,可将主节点数据同步给从节点,实现了读写分离,提高Redis的性能。但是现在还存在一个问题,就是在主从复制这种模式下只有一个主节点,一旦主节点宕机,就无法再进行写操作了。也就是说主从复制这种模式没有实现高可用。那么什么是高可用呢?如何实现高可用呢?

高可用介绍

高可用(HA)是分布式系统架构设计中必须考虑的因素之一,它是通过架构设计减少系统不能提供服务的时间。保证高可用通常遵循下面几点:  

  1. 单点是系统高可用的大敌,应该尽量在系统设计的过程中避免单点

  2. 通过架构设计而保证系统高可用的,其核心准则是:冗余

  3. 实现自动故障转移。

Redis sentinel介绍

sentinel(哨兵)是用于监控redis集群中Master状态的工具,其本身也是一个独立运行的进程,是Redis 的高可用解决方案,sentinel哨兵模式已经被集成在redis2.4之后的版本中。  

sentinel可以监视一个或者多个redis master服务,以及这些master服务的所有从服务;

当某个master服务下线时,自动将该master下的某个从服务升级为master服务替代已下线的master服务继续处理请求,并且其余从节点开始从新的主节点复制数据。  

 在redis安装完成后,会有一个redis-sentinel的文件,这就是启动sentinel的脚本文件,同时还有一个sentinel.conf文件,这个是sentinel的配置文件。

 sentinel工作模式:

注意:现在已经基于sentinel实现了高可用,但是如果sentinel挂了怎么办呢?其实sentinel本身也可以实现集群,也就是说sentinel也是高可用的。  

Redis sentinel使用
配置sentinel

修改配置文件,执行命令:

cd /usr/local/redis/# 复制sentinel配置文件
cp /root/redis-4.0.14/sentinel.conf sentinel01.conf# 修改配置文件:
vi sentinel01.conf

 在sentinel01.conf配置文件中添加

# 外部可以访问
bind 0.0.0.0
sentinel monitor mymaster 127.0.0.1 6379 1
sentinel down-after-milliseconds mymaster 10000
sentinel failover-timeout mymaster 60000
sentinel parallel-syncs mymaster 1

注意:如果有sentinel monitor mymaster 127.0.0.1 6379 2配置,则注释掉。

参数说明:

  • sentinel monitor mymaster 192.168.200.129 6379 1

    mymaster 主节点名,可以任意起名,但必须和后面的配置保持一致。

    192.168.200.128 6379 主节点连接地址。

    1 将主服务器判断为失效需要投票,这里设置至少需要 1个 Sentinel 同意。

  • sentinel down-after-milliseconds mymaster 10000

    设置Sentinel认为服务器已经断线所需的毫秒数。

  • sentinel failover-timeout mymaster 60000

    设置failover(故障转移)的过期时间。当failover开始后,在此时间内仍然没有触发任何failover操作,当前 sentinel 会认为此次failover失败。

  • sentinel parallel-syncs mymaster 1

    设置在执行故障转移时, 最多可以有多少个从服务器同时对新的主服务器进行同步, 这个数字越小,表示同时进行同步的从服务器越少,那么完成故障转移所需的时间就越长。

启动sentinel

配置文件修改后,执行以下命令,启动sentinel:

/root/redis-4.0.14/src/redis-sentinel sentinel01.conf

 效果如下:

可以看到,6379是主服务,6380和6381是从服务。

测试sentinel

在6379执行shutdown,关闭主服务,Sentinel提示如下:

+sdown master mymaster 192.168.200.129 6379	#主节点宕机
+odown master mymaster 192.168.200.129 6379 #quorum 1/1 
+new-epoch 1
+try-failover master mymaster 192.168.200.129 6379 #尝试故障转移
+vote-for-leader 00a6933e0cfa2b1bf0c3aab0d6b7a1a6455832ec 1 #选举领导
+elected-leader master mymaster 192.168.200.129 6379
+failover-state-select-slave master mymaster 192.168.200.129 6379 #故障转移选择从服务
+selected-slave slave 192.168.200.129:6380 192.168.200.129 6380 @ mymaster 192.168.200.129 6379
#故障转移状态发送 发送到6380
+failover-state-send-slaveof-noone slave 192.168.200.129:6380 192.168.200.129 6380 @ mymaster 192.168.200.129 6379
+failover-state-wait-promotion slave 192.168.200.129:6380 192.168.200.129 6380 @ mymaster 192.168.200.129 6379
+promoted-slave slave 192.168.200.129:6380 192.168.200.129 6380 @ mymaster 192.168.200.129 6379
+failover-state-reconf-slaves master mymaster 192.168.200.129 6379
+slave-reconf-sent slave 192.168.200.129:6381 192.168.200.129 6381 @ mymaster 192.168.200.129 6379
+slave-reconf-inprog slave 192.168.200.129:6381 192.168.200.129 6381 @ mymaster 192.168.200.129 6379
+slave-reconf-done slave 192.168.200.129:6381 192.168.200.129 6381 @ mymaster 192.168.200.129 6379
+failover-end master mymaster 192.168.200.129 6379 #故障转移结束,原来的主服务是6379
+switch-master mymaster 192.168.200.129 6379 192.168.200.129 6380 #转换主服务,由原来的6379转为现在的6380
+slave slave 192.168.200.129:6381 192.168.200.129 6381 @ mymaster 192.168.200.129 6380
+slave slave 192.168.200.129:6379 192.168.200.129 6379 @ mymaster 192.168.200.129 6380
+sdown slave 192.168.200.129:6379 192.168.200.129 6379 @ mymaster 192.168.200.129 6380

 根据提示信息,我们可以看到,6379故障转移到了6380,通过投票选择6380为新的主服务器。

在6380执行info

# Replication
role:master
connected_slaves:1
slave0:ip=127.0.0.1,port=6381,state=online,offset=80531,lag=1

 在6381执行info

# Replication
role:slave
master_host:127.0.0.1
master_port:6380
master_link_status:up

故障转移如下图:

Redis内置集群cluster

Redis cluster介绍

Redis Cluster是Redis的内置集群,在Redis3.0推出的实现方案。在Redis3.0之前是没有这个内置集群的。Redis Cluster是无中心节点的集群架构,依靠Gossip协议协同自动化修复集群的状态。

Redis cluster在设计的时候,就考虑到了去中心化,去中间件,也就是说,集群中的每个节点都是平等的关系,都是对等的,每个节点都保存各自的数据和整个集群的状态。每个节点都和其他所有节点连接,而且这些连接保持活跃,这样就保证了我们只需要连接集群中的任意一个节点,就可以获取到其他节点的数据。

Redis cluster集群架构图如下:

 

哈希槽方式分配数据

需要注意的是,这种集群模式下集群中每个节点保存的数据并不是所有的数据,而是一部分数据。

那么数据是如何合理的分配到不同的节点上的呢?  

Redis 集群是采用一种叫做哈希槽 (hash slot)的方式来分配数据的。redis cluster 默认分配了 16384 个slot,当我们set一个key 时,会用CRC16算法来取模得到所属的slot,然后将这个key 分到哈希槽区间的节点上,具体算法就是:CRC16(key) % 16384。  

假设现在有3个节点已经组成了集群,分别是:A, B, C 三个节点,它们可以是一台机器上的三个端口,也可以是三台不同的服务器。那么,采用哈希槽 (hash slot)的方式来分配16384个slot 的话,它们三个节点分别承担的slot 区间是:  

  • 节点A覆盖0-5460

  • 节点B覆盖5461-10922

  • 节点C覆盖10923-16383

 那么,现在要设置一个key ,比如叫my_name:

set my_name xiaoming

按照redis cluster的哈希槽算法:CRC16('my_name')%16384 = 2412。 那么就会把这个key 的存储分配到 节点A 上了。  

Redis cluster的主从模式

redis cluster 为了保证数据的高可用性,加入了主从模式,一个主节点对应一个或多个从节点,主节点提供数据存取,从节点则是从主节点拉取数据备份,当这个主节点挂掉后,就会在这些从节点中选取一个来充当主节点,从而保证集群不会挂掉。

redis cluster加入了主从模式后的效果如下:

 

Redis cluster搭建
准备Redis节点

为了保证可以进行投票,需要至少3个主节点。

每个主节点都需要至少一个从节点,所以需要至少3个从节点。

一共需要6台redis服务器,我们这里使用6个redis实例,端口号为7001~7006。

先准备一个干净的redis环境,复制原来的bin文件夹,清理后作为第一个redis节点,具体命令如下:

# 进入redis安装目录
cd /usr/local/redis
# 复制redis
mkdir cluster
cp -R bin/ cluster/node1
# 删除持久化文件
cd cluster/node1
rm -rf dump.rdb
rm -rf appendonly.aof
# 删除原来的配置文件
rm -rf redis.conf
# 复制新的配置文件
cp /root/redis-4.0.14/redis.conf ./
# 修改配置文件
vi redis.conf

集群环境redis节点的配置文件如下:

# 不能设置密码,否则集群启动时会连接不上
# Redis服务器可以跨网络访问
bind 0.0.0.0
# 修改端口号
port 7001
# Redis后台启动
daemonize yes
# 开启aof持久化
appendonly yes
# 开启集群
cluster-enabled yes
# 集群的配置 配置文件首次启动自动生成
cluster-config-file nodes.conf
# 请求超时
cluster-node-timeout 5000

第一个redis节点node1准备好之后,再分别复制5份,

cp -R node1/ node2
修改六个节点的端口号为7001~7006,修改redis.conf配置文件即可编写启动节点的脚本:
vi start-all.sh
内容为:
cd node1
./redis-server redis.conf
cd ..
cd node2
./redis-server redis.conf
cd ..
cd node3
./redis-server redis.conf
cd ..
cd node4
./redis-server redis.conf
cd ..
cd node5
./redis-server redis.conf
cd ..
cd node6
./redis-server redis.conf
cd ..
设置脚本的权限,并启动:
chmod 744 start-all.sh
./start-all.sh

使用命令 ps -ef | grep redis 查看效果如下:

启动Redis集群

redis集群的管理工具使用的是ruby脚本语言,安装集群需要ruby环境,先安装ruby环境:  

# 安装ruby
yum -y install ruby ruby-devel rubygems rpm-build# 升级ruby版本,redis4.0.14集群环境需要2.2.2以上的ruby版本
yum install centos-release-scl-rh
yum install rh-ruby23  -y
scl enable rh-ruby23 bash# 查看ruby版本
ruby -v

 下载符合环境要求的gem,下载地址:redis | RubyGems.org | your community gem host

安装命令:

gem install redis-4.1.0.gem

进入redis安装目录,使用redis自带的集群管理脚本,执行命令:

# 进入redis安装包
cd /root/redis-4.0.14/src/
# 查看集群管理脚本
ll *.rb
# 使用集群管理脚本启动集群,下面命令中的1表示为每个主节点创建1个从节点
./redis-trib.rb create --replicas 1 127.0.0.1:7001 127.0.0.1:7002 \
127.0.0.1:7003 127.0.0.1:7004 127.0.0.1:7005 127.0.0.1:7006效果如下:
>>> Creating cluster
>>> Performing hash slots allocation on 6 nodes...
Using 3 masters:
192.168.200.129:7001
192.168.200.129:7002
192.168.200.129:7003
Adding replica 192.168.200.129:7005 to 192.168.200.129:7001
Adding replica 192.168.200.129:7006 to 192.168.200.129:7002
Adding replica 192.168.200.129:7004 to 192.168.200.129:7003
>>> Trying to optimize slaves allocation for anti-affinity
[WARNING] Some slaves are in the same host as their master
M: f0094f14b59c023acd38098336e2adcd3d434497 192.168.200.129:7001slots:0-5460 (5461 slots) master
M: 0eba44418d7e88f4d819f89f90da2e6e0be9c680 192.168.200.129:7002slots:5461-10922 (5462 slots) master
M: ac16c5545d9b099348085ad8b3253145912ee985 192.168.200.129:7003slots:10923-16383 (5461 slots) master
S: edc7a799e1cfd75e4d80767958930d86516ffc9b 192.168.200.129:7004replicates ac16c5545d9b099348085ad8b3253145912ee985
S: cbd415973b3e85d6f3ad967441f6bcb5b7da506a 192.168.200.129:7005replicates f0094f14b59c023acd38098336e2adcd3d434497
S: 40fdde45b16e1ac85c8a4c84db75b43978d1e4d2 192.168.200.129:7006replicates 0eba44418d7e88f4d819f89f90da2e6e0be9c680
Can I set the above configuration? (type 'yes' to accept): yes #注意选择为yes
>>> Nodes configuration updated
>>> Assign a different config epoch to each node
>>> Sending CLUSTER MEET messages to join the cluster
Waiting for the cluster to join..
>>> Performing Cluster Check (using node 192.168.200.129:7001)
M: f0094f14b59c023acd38098336e2adcd3d434497 192.168.200.129:7001slots:0-5460 (5461 slots) master1 additional replica(s)
M: ac16c5545d9b099348085ad8b3253145912ee985 192.168.200.129:7003slots:10923-16383 (5461 slots) master1 additional replica(s)
S: cbd415973b3e85d6f3ad967441f6bcb5b7da506a 192.168.200.129:7005slots: (0 slots) slavereplicates f0094f14b59c023acd38098336e2adcd3d434497
S: 40fdde45b16e1ac85c8a4c84db75b43978d1e4d2 192.168.200.129:7006slots: (0 slots) slavereplicates 0eba44418d7e88f4d819f89f90da2e6e0be9c680
M: 0eba44418d7e88f4d819f89f90da2e6e0be9c680 192.168.200.129:7002slots:5461-10922 (5462 slots) master1 additional replica(s)
S: edc7a799e1cfd75e4d80767958930d86516ffc9b 192.168.200.129:7004slots: (0 slots) slavereplicates ac16c5545d9b099348085ad8b3253145912ee985
[OK] All nodes agree about slots configuration.
>>> Check for open slots...
>>> Check slots coverage...
[OK] All 16384 slots covered.
使用Redis集群

按照redis cluster的特点,它是去中心化的,每个节点都是对等的,所以连接哪个节点都可以获取和设置数据。

使用redis的客户端连接redis集群,命令如下:

./redis-cli -h 192.168.200.129 -p 7001 -c

其中-c 一定要加,这个是redis集群连接时,进行节点跳转的参数。

连接到集群后可以设置一些值,可以看到这些值根据前面提到的哈希槽方式分散存储在不同的节点上了。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/140263.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用ElementUI完成登入注册的跨域请求提高开发效率

&#x1f3ac; 艳艳耶✌️&#xff1a;个人主页 &#x1f525; 个人专栏 &#xff1a;《Spring与Mybatis集成整合》​​​​​​​ ⛺️ 生活的理想&#xff0c;为了不断更新自己 ! 目录 ​编辑 1、前言 1.1.什么是ELementUI 2、完成登陆注册前端页面 2.1环境搭建 运行…

八大排序(二)快速排序

一、快速排序的思想 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法&#xff0c;其基本思想为&#xff1a;任取待排序元素序列中的某元素作为基准值&#xff0c;按照该排序码将待排序集合分割成两子序列&#xff0c;左子序列中所有元素均小于基准值&#xff0c;右…

MinGW相关错误

1、go编译c报错 cc1.exe: sorry, unimplemented: 64-bit mode not compiled in 参考&#xff1a;BeifangCc go编译c报错 cc1.exe: sorry, unimplemented: 64-bit mode not compiled in 说明当前gcc是32位&#xff0c;无法在当前64位机器上正常工作&#xff0c;需要更新gcc 下载…

2023手把手教授neo4j安装及环境配置

安装包下载&#xff1a; 首先进入Neo4j官网&#xff1a;Neo4j Graph Database & Analytics | Graph Database Management System 在上方选择栏中选择“Products”&#xff0c;在其中选择“Deployment Center”&#xff0c;点击“Download Neo4j to get started” 然后往下…

【Tomcat】Tomcat 运行原理

Tomcat 运行原理 一. Servlet 运行原理1. 接收请求2. 根据请求计算响应3. 返回响应 二. Tomcat 的伪代码1. Tomcat 初始化流程2. Tomcat 处理请求流程3. Servlet 的 service 方法的实现 一. Servlet 运行原理 在 Servlet 的代码中我们并没有写 main 方法, 那么对应的 doGet 代…

ARM Linux DIY(十三)Qt5 移植

前言 板子带有屏幕&#xff0c;那当然要设计一下 GUI&#xff0c;对 Qt5 比较熟悉&#xff0c;那就移植它吧。 移植 Qt5 buildroot 使能 Qt5&#xff0c;这里我们只开启核心功能 gui module --> widgets module 编译 $ make ODIY_V3S/ qt5base编译报错&#xff1a;找不…

Flink TaskManger 内存计算实战

Flink TaskManager内存计算图 计算实例 案例一、假设Task Process内存4GB。 taskmanager.memory.process.size4096m 先排减JVM内存。 JVM Metaspace 固定内存 256mJVM Overhead 固定比例 process * 0.1 4096 * 0.1 410m 得到 Total Flink Memory 4096-256-410 3430m 计…

【线性代数】为什么 AA* = |A|E

A A ∗ 矩阵相乘&#xff0c;刚好是行列式展开的定义 AA*矩阵相乘&#xff0c;刚好是行列式展开的定义 AA∗矩阵相乘&#xff0c;刚好是行列式展开的定义 矩阵提取一个因子 ∣ A ∣ &#xff0c;所有元素需要除 ∣ A ∣ 矩阵提取一个因子 |A|&#xff0c;所有元素需要除 |A| 矩…

【C/C++笔试练习】——printf在使用%的注意事项、for循环语句的三个条件、运算符优先级、删除公共字符

文章目录 C/C笔试练习1.%符号在printf用作格式说明符的注意事项&#xff08;1&#xff09;输出%5.3s&#xff08;2&#xff09;判断%中小数点含义 2.for循环语句的三个条件&#xff08;3&#xff09;判断循环次数&#xff08;4&#xff09;判断循环次数 3.运算符优先级&#xf…

【ACDC数据集】:预处理ACDC心脏3D MRI影像数据集到VOC数据集格式,nii转为jpg,label转为png

【Segment Anything Model】做分割的专栏链接&#xff0c;欢迎来学习。 【博主微信】cvxiaoyixiao 本专栏为公开数据集的预处理&#xff0c;持续更新中。 文章目录 1️⃣ ACDC数据集介绍2️⃣ ACDC数据集样例 3️⃣ 预处理ACDC目标 4️⃣ 处理结果样图 5️⃣ 代码 6️⃣ 划分测…

文件高效批量重命名,轻松重命名不同类型的文件名并隐藏编号

你是否曾经因为文件名混乱而感到困扰&#xff1f;你是否希望有一种方法可以快速、简单地管理你的文件名&#xff1f;如果你的答案是肯定的&#xff0c;那么我们的产品——文件重命名工具&#xff0c;将是你的完美解决方案&#xff01; 首先我们要进入文件批量改名高手主页面&a…

Sqilte3初步教程

文章目录 安装创建数据库创建和删除表插入行数据 安装 Windows下安装&#xff0c;首先到下载页面&#xff0c;下载Windows安装软件&#xff0c;一般是 sqlite-dll-win32-*.zip sqlite-tools-win32-*.zip下载之后将其内容解压到同一个文件夹下&#xff0c;我把它们都放在了D:\…

搭建ELK+Filebead+zookeeper+kafka实验

部署 Zookeeper 集群 准备 3 台服务器做 Zookeeper 集群 192.168.10.17 192.168.10.21 192.168.10.22 1.安装前准备 关闭防火墙 systemctl stop firewalld systemctl disable firewalld setenforce 0 安装 JDK yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-…

DolphinDB x 龙蜥社区,打造多样化的数据底座

近日&#xff0c;浙江智臾科技有限公司&#xff08;以下简称“DolphinDB”&#xff09;正式签署 CLA 贡献者许可协议&#xff0c;加入龙蜥社区&#xff08;OpenAnolis&#xff09;。 DolphinDB 主创团队从 2012 年开始投入研发产品。作为一款基于高性能时序数据库&#xff0c;D…

【pytest】 allure 生成报告

1. 下载地址 官方文档; Allure Framework 参考文档&#xff1a; 最全的PytestAllure使用教程&#xff0c;建议收藏 - 知乎 https://github.com/allure-framework 1.2安装Python依赖 windows&#xff1a;pip install allure-pytest 2. 脚本 用例 import pytest class …

代码随想录算法训练营 动态规划part12

一、最佳买卖股票时机含冷冻期 309. 买卖股票的最佳时机含冷冻期 - 力扣&#xff08;LeetCode&#xff09; public class Solution {public int maxProfit(int[] prices) {int len prices.length;if (len < 2) {return 0;}int[] dp new int[3];dp[0] 0;dp[1] -price…

leetcode:2446. 判断两个事件是否存在冲突(python3解法)

难度&#xff1a;简单 给你两个字符串数组 event1 和 event2 &#xff0c;表示发生在同一天的两个闭区间时间段事件&#xff0c;其中&#xff1a; event1 [startTime1, endTime1] 且event2 [startTime2, endTime2] 事件的时间为有效的 24 小时制且按 HH:MM 格式给出。 当两个…

terraform简单的开始-vpc cvm创建

从网络开始 从创建VPC开始 复用前面的main.tf的代码&#xff1a; terraform {required_providers {tencentcloud {source "tencentcloudstack/tencentcloud"version "1.81.25"}} } variable "region" {description "腾讯云地域"…

Spring Boot的新篇章:探索2.0版的创新功能

文章目录 引言1. Spring Boot 2.0的响应式编程2. 自动配置的改进3. Spring Boot 2.0的嵌入式Web服务器4. Spring Boot 2.0的Actuator端点5. Spring Boot 2.0的Spring Data改进6. Spring Boot 2.0的安全性增强7. Spring Boot 2.0的监控和追踪8. Spring Boot 2.0的测试改进结论 &…

Learn Prompt-提供示例

目前我们与 ChatGPT 交流的主要形式是文字。提示除了指令问题的形式外&#xff0c;还可以包含例子。特别是当我们需要具体的输出时&#xff0c;提供例子可以省去我们对具体任务的解释&#xff0c;帮助ChatGPT更好地理解我们的确切需求&#xff0c;从而提供更准确&#xff0c;更…