浅评ChatGPT在软件开发上的辅助能力(附GPT-4对比)

c97c108c59abea673dff4a8b8f3c89a6.jpeg

519caa046ba0f6258910b0581d44a49f.gif

01

背景

      ChatGPT于去年正式公测后,凭借其强大的自然语言处理能力迅速获得业内广泛关注,特别是辅助软件开发上,初步表现出了令人满意的能力,然而正当业内积极探索引入ChatGPT后的新工作模式之时,OpenAI又发布了基于GPT-4架构的升级版本,在语言理解、逻辑推理、情感分析等方面赋予了ChatGPT更优的表现,甚至引入了多模态的能力。这一升级让人印象深刻的同时,也让人对ChatGPT的能力有了更多的不确定:

ChatGPT 在软件开发上究竟能提供多大的辅助?

- 在GPT-4的加持之下,ChatGPT在软件开发辅助上的表现是否真的更加优秀?

- 传统软件开发究竟又会因此发生怎样的变化?

    带着这些疑问,我们以两个前后端分离的本科课程项目为素材,以具体的项目场景为背景,对ChatGPT在软件开发上的辅助能力进行了简要的测评。

    (注:为方便行文,后文提及的GPT-3.5指“基于GPT-3.5的ChatGPT”,GPT-4则指“基于GPT-4的ChatGPT”。)

d065c03d7aa1bbcf0fffe8dfb4ea0e6e.png

02

需求生成

    第一部分,我们模拟一个从零开始的开发场景,开发者只有一个关于目标系统的基础概念,将需求分析和细化工作全部交给ChatGPT生成。为了结果尽可能细致,我们在prompt时加入了功能和非功能性需求的拆分。

54c154f8fce52f2b2741e9eb2a79f42f.png

▲ 对目标系统的概念描述

5dbd37ad9e608ffe0fce54bdd7644f6b.png

▲ GPT-3.5生成的功能性需求

073c7ae0f1823d33c1ca52498d73ee42.png

▲ GPT-4生成的功能性需求

    仅从功能性需求上看,双方的答复整体没有太大偏差,GPT-3.5的结果更加详细,GPT-4的结果相对比较“概括”,与我们问题中的“尽可能完善”有一定出入。

2cff8028c04065104608dab470144dea.png

15b29a0abfd6627e83019c0b42a687c3.png

▲ GPT-3.5生成的非功能性需求

58105f1364332c597b88b8bd0fe92fdf.png

▲ GPT-4生成的非功能性需求

    在非功能性需求上看,GPT-4的结果涉及的内容更加丰富,但缺点是内容与教务系统场景结合并不紧密,反而是GPT-3.5考虑到了实际的业务场景。例如关于高并发,GPT-3.5提到“能够在繁忙的选课期间保持稳定的性能”,而GPT-4只是笼统地说“系统应能在高并发场景下正常运行”。

03

需求细化

    第二部分,我们模拟实际开发过程中收到初步需求描述,需要进一步细化进行开发和验收的场景。

    我们给定一个较为具体的需求描述,要求chatgpt根据该描述进行需求的条目化,同时还要求其识别出尽可能多的用户故事,并写出相应的验收标准。

3.1 基于简单需求描述进行细化

     我们提前告知ChatGPT对后一段文字进行需求的识别和条目化,然后将项目的初步需求描述分别喂给GPT-3.5和GPT-4,获得以下结果:

64d916b454fd82cfabb723328d70f17d.png

▲ 项目初步需求描述

3e99befab5f40010e3195bc14e3a8517.png

▲ GPT-3.5的需求分解

ea5e21075b6de2565dbb4b371faf3275.png

▲ GPT-4的需求分解

    从结果观察,GPT-4生成的条目更多,对有些需求进行了更细粒度地拆分,对于相同需求的描述也显得更为简单。例如GPT-3.5回复的第二条座位签到功能,在GPT-4生成的结果中被细分为了4、5、6三条。

    但是需要注意的是,GPT-3.5和GPT-4都存在需求遗漏的情况。例如GPT-3.5的结果中缺少关于“靠近插座的座位应该有特殊标记”的需求,GPT-4的的条目化结果中忽略了“预约必须以整点为单位”这个较为重要的约束。

3.2 基于需求识别用户故事

   做完初步需求分析后,我们尝试让ChatGPT生成用户故事,进一步分解任务的细节:

d9899256f10d40ce9affb628e77c176a.png

▲ GPT-3.5生成的用户故事

c51e4b6de7b829feb4bfd08bb95dc053.png

▲ GPT-4生成的用户故事

    从结果上看,GPT-4表现得要比GPT-3.5要丰富和细致,值得注意的是GPT-4在用户故事中使用了第一人称“我”而不是第三人称来进行讲述,或许正是基于这一点,它能够更加“体会”需求中的一些人性化成分,比如第11条的故事中讲述道:“我希望能够清楚地看到靠近插座的座位”,这十分贴合我们日常学习生活中的想法和感受。

    此外,前一轮分析中的遗漏在这里的影响也进一步扩大,ChatGPT构建的系统中似乎彻底遗忘了原始需求中的一部分要求,如果缺少人为检验,这部分的缺失会引起较多后续问题。

3.3 基于需求制定验收标准

   在需求上的最后一步尝试时让ChatGPT为我们生成对应需求的验收标准。

3172f176b224ef43ca53107a28cdf0eb.png

▲ GPT-3.5生成的验收标准

0dfaf286d80eda0ddcfcf3bac535347d.png

▲ GPT-4生成的验收标准

   从验收标准来看,GPT-3.5是以模块为最小单位,而GPT-4的结果粒度更细,更易直接实施。

04

编码辅助

     第三部分,我们模拟项目的迭代场景,在项目出现新的需求或挑战时,考察ChatGPT能否在现有的项目代码基础之上直接为我们生成可用代码及必要的辅助提示。

    我们主要考虑以下三个问题:1.给定一段较长的功能性需求的文本,让其进行代码生成以满足需求。2.向其询问非功能性需求的具体实现方式。3.给定部分已经实现的功能性代码,要求其添加非功能性优化代码。

4.1 根据功能性需求生成代码

91f29d60577ca9ae98ee9431ad5e1d6f.png

▲ 项目功能需求描述

     我们给定了上方这段很长的功能性需求描述,要求ChatGPT直接为我们生成代码,尝试它是否具备跨文件设计系统的能力。

f4bdc995e9fefd0f5500fa7070565be8.png

▲ GPT-3.5的答复

      GPT-3.5在这个问题上打了太极,回避了直接生成代码,只用自然语言进行了一部分步骤描述,这自然不是我们所期待的,于是我们尝试针对某一需求进行更加细致的提问:

1560c98107e168404afebde2ce55e6fc.png

11b48869ed5c5c9312005d92ba07dc0e.png

f21ce3692853ada451af9792e3c1e5f4.png

▲ GPT-3.5生成的代码

任务细化后,GPT-3.5就用户模块的内容生成了具体代码,并且按照文件和架构拆分为了controller、service、dao三部分,符合Spring框架的开发习惯,几乎是拿来即用的。

    而在GPT-4上进行相同的尝试,我们发现GPT-4在面对最初的长篇需求时,就直接按照要求进行了代码的生成。

6a0bcbe4c177e45790728c9ecd915fa1.png

1954ee8d636ecb6d6be3bfa968da8d8e.png

296e89327607f1315a8e23dfae6d5e27.png

61cd0276a52fd7b23270ad7991c724ac.png

9c7f60f8cd8dc4cdea69c3bbe33dfee6.png

bf7a552ad578be0cbd27b9812d694355.png

GPT-4不仅进行了完成了从需求分析、设计、实体抽取到代码框架的编写,而且以用户模块为例,展示了controller层和service层的具体写法,相较于GPT-3.5,还考虑到了service层的接口和实现,内容非常细致。以它呈现的大体框架为出发点,还可以针对相应的部分进行进一步的代码生成,逐渐形成系统级别的代码。

b9cfd7e96c0e6eb22a8f1de45b1fdd0a.png

01b591fb66a63b9e7e2bb6e87029f6c4.png

eabbf3f8dbfb3ca18d0427eba7586507.png

1bc8983800f21443e5ebc2c3f47ec9f3.png

b69ef912797a19193cacf22a9b96481a.png

▲ 要求生成其他模块的代码

    这里值得注意的是,在进行进一步提问以获取更加详细的功能代码时,需求描述应尽量清晰。例如即便第一轮提问已经涉及了全部功能,但要求ChatGPT实现具体功能代码时,列出需要实现的具体功能名称(例如提问”能否给出个人信息维护、学院/专业信息维护的具体实现代码“)比简单使用代词(例如提问”能否给出上述功能的具体实现代码“)的效果要更好。

    现在我们已经得到了ChatGPT为教务管理系统生成的一个大体的代码框架,接下来我们将在IDEA中新建一个Maven项目,并把这些代码放入相应的java文件中观察代码是否存在错误,并且根据代码来让ChatGPT回答、解决相关的问题。

588212ca7fead85635f114352b98fba0.png

▲ 项目目录

    首先观察Controller中的代码,在此过程中,我误将其中的ResponseEntity认为是一个自定义的实体类,故而在此我要求其生成一个ResponseEntity实体类。但ChatGPT没有受到我的“误导”,而是纠正了我的错误,同时解释了该实体类该如何使用。

ba16b6600e7dcd10621bafcff3eeaa88.png

▲ ChatGPT并没有受到“误导”

    在按照它的建议导入完包之后,各个Controller类本身便不存在问题了,现在需要将目光投向Service类。在之前的过程中ChatGPT只为我们生成了UserService及UserServiceImpl,所以还需要生成Major与College的Service接口及其实现类:

7c5b93ed976f71a760c395b32e04e4f5.png

5a1decfbd15f478e63b7f4c8800e3bb2.png

f4778e066e89489bb582661174eb8612.png

937ea0894fdd0c242048abdbdd36f685.png

▲ GPT-4生成的回复

    这里生成的代码出了一些问题,在CollegeController中存在一个if判断:

80fdb3c53f887c4aa91cbae8cbb24261.png

▲ CollegeController中的if判断

    所以deleteCollege方法应当返回一个布尔值,但其生成的代码却不返回值,看起来就像ChatGPT“不记得”之前写过的代码,没有做到前后对应:

c29b50c24034b680d7616695928d4635.png

▲ 生成的错误返回值代码

    我们对ChatGPT的错误进行了纠正,并让它重新生成了回复,这次生成了正确的代码:

982b2d13830ba11a614b04312e3912f9.png

7d7d5f7f8dd103fff122cedc367a7956.png

d7b117f9c01ce46e09f1ccaaf2bd0c05.png

5550f151f4cee8cbd7808b18944c3d0f.png

▲ GPT-4纠正后的回复

    就生成的代码,我们提问了依赖相关的问题,ChatGPT为我们生成了导入依赖的代码:

6c013d42cfc024f239b5cfec1b8d6534.png

▲ GPT-4关于依赖的回复

    但是ChatGPT生成的测试代码中使用的是像@RunWith这样的JUnit4中的注解,而它却让我们添加的却是JUnit5的依赖,经过提醒后它对结果进行了修正:

36d956230d8245f4288acd09671b0086.png

▲ GPT-4纠正后的回复

    总体来看,当ChatGPT收到一个较为宏观、复杂度较大的需求时,它通常可以从整体上对其作出分析,并能够在框架上生成出代码,但是这些代码可能不够完整、正确、缺少必要的依赖,不能直接拿来运行,而是需要根据开发者进一步的询问来逐渐引导其生成粒度更小的代码片段或代码文件、或是询问其所需要的依赖。但是在这个诱导的过程中,ChatGPT可能会“遗忘”之前生成过的代码,造成如方法名、方法返回值前后不一这样的问题,譬如在上面的过程中另外还发现CollegeController 中调用了collegeService的createCollege方法,但ChatGPT却在此次生成时把createCollege方法替换(更名)成了saveCollege方法;也会有依赖版本不对应这样的问题,但如果开发者注意到了问题并提醒ChatGPT,那么它就能意识到并尝试纠正这些问题。

4.2 在现有代码上迭代新需求

    我们尝试在一个现有系统上添加一些非功能性优化,首先询问ChatGPT关于优化的措施与具体代码,再让它将这些代码直接嵌入我们现有的系统中。

6a90cc781942a24a16501510cb0c31aa.png

17c592468bf2d5ca1cbfa64db5baa19b.png

▲ GPT-3.5的优化建议

2a7fc8c0ae71c6c32c836b248681eb69.png

▲ GPT-4的优化建议

     在理论性的知识上,双方都可以出了很多可行的措施,相较之下,GPT-4给出的建议更丰富、更具统领性。针对双方建议中都提及的缓存,我们要求给出具体的代码:

e76b561080558c97b1da7a7d8e018024.png

9175b9962522ebfff9c9fec3621c08bd.png

▲ GPT-3.5的回复

708ffd0b49b662a336e670f41208db80.png

ee6bdbc4fdaa79a99afb387d80f3c9cc.png

f18798db94a232de88c045e37daa881b.png

6ac8fa3bccff617226e4ca8d02439229.png

▲ GPT-4的回复

     尽管GPT-3.5给出的结果已经让人很满意,但是GPT-4依然胜在给出了详细的配置缓存的步骤,说明其考虑到了实际开发中代码以外的因素。

4.3 基于现有代码直接修改

   最后一步,我们给出了一段实际的代码,要求chatgpt在原来代码的基础上添加缓存功能。

084347b5d8f0d494b5f9027c7dcf68e9.png

▲ 给定现有代码要求加入缓存

a9fd55ef06dab885d5e2842f43053e0b.png

fd1d71d2ea1a26d9db4b885d6b86cc1a.png

f9c47497fbe362a708827779dc7988b1.png

▲ GPT-3.5的答复(代码有省略)

f444ad079f2a26371465bfbfa28c7a3e.png

5d955dd033f3a1586897d462c9d871a7.png

dbc33bb1772247d6ca4aca48163d8d20.png

39a34e36ffbb2e4a3113a7ddb230084a.png

253954866f4d32a047e029a386dae32f.png

808c46b0ae2d84e10585fcafddccd776.png

▲ GPT-4的答复(代码有省略)

   GPT-3.5和GPT-4都能以不同的方式为代码添加缓存机制,但是GPT-4考虑得情况更加多变,几乎生成了一篇关于缓存机制的示例博文。例如它考虑移除过多的缓存条目可能会对性能有较大影响,因此给用户提供了另一个选择。

05

总结

    总体上说,在我们结合实际项目的上手体验后,认为GPT-4和GPT-3.5在通用知识上的能力是比较一致的,都可以生成可解释性很强的回答,准确性也非常高,相较于传统的大模型而言,ChatGPT的能力是遥遥领先的。而GPT-4相较于GPT-3.5的主要优点可能在于它在保留了通用知识的高准确性的同时,能够考虑更多任务中的细节,并更适配具体的场景。对于开发人员来说,这种能力可以帮助他们快速地将ChatGPT接入自己项目的特定上下文中,并且生成更可靠的代码。

    此外,我们也总结出了一些其他实践经验和感受。

5.1 提示质量对于ChatGPT性能的影响

    ChatGPT可以为程序员编写代码提供强有力的帮助和支持已经是软工领域的共识。然而,我们发现,ChatGPT能够提供多大的帮助,很大程度取决于提问的方式和提示的质量。

1. 精准的需求描述

   在提出问题之前,提问者需要仔细地考虑问题的范围和具体需求。无论是期望使用的语言,框架,还是期望实现的功能或非功能代码,都应尽可能详细地进行描述,避免使用较为笼统的词汇和指代不明的代词,以便ChatGPT能够根据这些提示产生更加准确的回答。

2. 划分子任务,提问由浅入深

   提问者需要擅长拆解问题,将一个庞大的项目拆解成为一个个需求明确的小任务,提问时问题需要由浅入深,由粗到细,才能一步步引导ChatGPT给出更加具体切实的回答。

   从4.1的尝试结果中我们可以看出,如果一开始将一个完整的大项目直接让ChatGPT完成,ChatGPT只能给出较为通用笼统的答案,GPT-4的表现好于GPT-3.5,但依然无法一次性生成项目所需的全部代码。因此,提问时应该先将背景信息提供给ChatGPT,再在此基础上让ChatGPT依次实现拆解后代码量不大的的子任务,以此引导ChatGPT提供最大限度的帮助。

3. 提问“刨根问底”

提问者想要得到尽可能详细和准确的答案,还需要发挥”刨根问底“的精神。一方面,从我们的尝试中可以看出,很多代码细节ChatGPT并不会在一开始就给出,但通过不断追问细节,ChatGPT其实有能力给出非常具体的回答。此外,ChatGPT生成的内容不一定总是正确的,如果对生成的内容有质疑,可以直接向ChatGPT提出,让其进行解释或引导它更正回答,而不要盲目轻信。

因此,为了最大限度发挥ChatGPT的优势,未来程序员需要具备精准详细提问、拆解问题以及逐步深入引导ChatGPT生成具体代码的能力。只有这样才能与ChatGPT高效合作,共同完成软件开发任务。

5.2 ChatGPT的不足

1.无法支持复杂软件的端到端开发

    从4.1的尝试中可以看出,从自然语言的需求描述到最终可以编译运行的代码中间,需要不断的细化提问。ChatGPT更偏向于给出一个代码实现框架,内部很多具体的方法和所需依赖都难以一次性生成,而需要提问者在实际编译运行中不断发现问题,进一步细粒度提问。但在进一步诱导生成更细粒度代码的过程中,ChatGPT可能会“遗忘”之前生成的代码(例如随着轮次的增加,ChatGPT新生成的代码变得不符合之前轮次中所生成的代码上下文)。因此,目前ChatGPT对于软件开发的辅助仍然难以达到完全端到端的程度,软件开发的”最后一公里“仍然需要程序员自身不断进行调试修改与完善。

2. 具有较大随机性。

相同的问题,多次提问ChatGPT后产生的回答可能截然不同,总体来说生成结果具有较大随机性,这对于一些想要利用ChatGPT进行的科学研究可能存在一定程度的影响。例如,如果想要研究不同提示模板对于生成内容的影响,可能无法确定是提示模板更换带来的生成效果改善,还是单纯随机生成的结果。

3.无法保证正确性。

    “一本正经地胡说八道”是很多人诟病ChatGPT存在的问题,这一问题目前仍然没有得到很好的解决,即使是GPT-4生成的内容也依然无法保证正确性。这就要求利用ChatGPT辅助软件开发的程序员自身拥有一定的背景知识和项目理解,仔细评估ChatGPT的回答,并进行必要的修改和调整,以确保生成的代码符合实际需求。

复旦大学 CodeWisdom团队

作者丨杜雪盈 字千成 刘俊伟

排版丨刘俊伟

审核丨彭鑫 娄一翎 刘名威

5e32a05b86ad0e1549d72a8bcec9e605.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/14236.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PDF转CAD在线怎么转换?分享个在线转换的方法

从事CAD设计的小伙伴有没有经常收到PDF格式的CAD文件呢?因为使用PDF格式来传输不仅方便我们查阅,且能保证图纸内容不会因不同设备导致内容错乱,而且如果用手机查阅也不用担心不能直接打开文件!但是PDF文件不能直接进行编辑&#x…

如何转换DWG文件格式?来试试这两种方法

DWG格式的文件如何转换格式呢?从事CAD相关工作的小伙伴都知道,DWG格式文件是CAD文件里最常见的一种文件格式,与它相伴出现的还有DXF格式,如果我们想要将DWG格式文件转换成DXF格式文件来进行绘图,我们该如何转换呢&…

CAD怎么转换成JPG图片?教大家一个好用的转换方法

怎么把CAD文件转换成JPG格式的图片呢?CAD文件经常出现在建筑行业或者是一些建设行业中,因为很多的施工单位在施工前都会以CAD文件格式来绘制好图纸。但是CAD文件离开专业的设备一般不容易打开,我们想要随时随地的浏览文件是一个问题。实际上我…

1分钟告诉你cad版本转换器怎么用

部分从事设计行业的小伙伴,通常会使用CAD软件进行创作,但有些人习惯了老版本的操作界面,便可能出现他人发送图纸供你查阅时,因为版本过低打不开文件的情况。 其实要解决这一困扰并不难,我们只要将新版本的CAD图纸转换…

cad在线转成低版本的途径分享,适合新手

CAD如何转换成低版本?CAD作为一种绘图工具已经被人们所熟知,它凭借着高效率和高准确性大大提高了我们的设计质量和灵活度。哪怕非设计行业工作者现在也有不少开始学习该软件,其影响力可见一斑。然而我们在接收到他人传输过来的文件时&#xf…

CAD版本转换怎么操作?这些方法了解了吗

目前市场上有很多CAD版本。每个人的使用习惯和计算机配置都不一样。不同版本的CAD软件生成不同的CAD文件。虽然制作CAD文件的操作方法相似,但新旧版本存在兼容性问题。高版本的CAD软件可以看到低版本软件制作的设计图纸,但低版本工具看不到高版本工具制作…

CAD版本转换怎么操作?几个步骤教会你

CAD是建筑设计行业经常使用的图纸文件,但是有些图纸的格式可能会因为版本太高或者太低而打不开。不知道小伙伴们遇到这种情况是不是也束手无策呢?其实我们只需要使用一些软件来转换CAD版本即可。那么小伙伴们知道CAD版本转换怎么操作吗?还不了…

CAD快速看图怎么转换成PDF格式?这一款软件就足够

CAD快速看图怎么转换成PDF格式?CAD文件是一种比较专业的文件,一般用于设计、绘图等,这种文件需要特殊的软件才可以打开,不过对于大多数人来说,都很少会安装这种软件,因为下载和安装软件需要很多时间&#x…

CAD如何免费转换PDF格式

有的时候,我们需要将我们的CAD文件转出PDF格式的文件发给客户,以便客户打开查看,那么我们如何将CAD文件转换为PDF格式?今天和大家分享一种简单的操作方法,并且是免费试用的。 1,首先打开百度首页,用“Speedpdf”作为关…

CAD文件怎么批量转PDF格式?转换方法分享

我们如何将CAD文件批量转换成PDF格式呢?CAD文件是我们建筑、城建、道路施工等领域常用的一种设计图纸,我们将图纸设计好后,为了接收的那一方能够顺利打开文件,可以将CAD文件转换成PDF格式来发送。如果面对很多个CAD文件&#xff0…

CAD文件如何转JPG图片?分享两种转换方法

如何将一份CAD文件转换成JPG格式的图片呢?大家在拿到一份绘制好的CAD文件时,肯定是想要浏览文件,在我们没有将文件打印出来之前,离开专业的文件打开软件,是没办法随时浏览的,这时候我们可以将文件转换成JPG…

CAD版本转换怎么转?简单几步帮你解决

从事CAD相关行业的小伙伴每天都会接触到很多CAD图纸文件,有些图纸的格式会因为版本太低或者太高导致文件打不开。需要使用CAD版本转换器来转换图纸的版本。有的刚接触这一行的小伙伴就不是很明白怎么转换了,那么CAD版本转换怎么转呢?下面就和…

CAD版本怎么转换?试试这种方法

相信很多从事CAD绘图的小伙伴们对CAD版本转换应该不陌生吧,对于CAD版本通常有两种问题,一是CAD高版本可以打开低版本的图纸,相反低版本不能打开高版本图纸;二是高版本图纸转换为低版本可以直接在工具中另存为文件,就可…

CAD .NET 14.1.X DWG/ DXF, PLT 自由转换- CNC

CAD .NET CAD .NET是一个用于在 .NET 环境中开发解决方案的库。它支持 AutoCAD DWG/ DXF、PLT和其他 CAD 格式。 该库可用于广泛的领域: 在所有项目阶段使用工业图纸监控和远程控制程序数控加工数据导出为 CAD 格式使用数据库文件管理系统使用图纸的高度专业化产品…

怎么转换CAD文件的版本?分享两种转换版本的方法

CAD文件的版本怎么转换呢?大家如果有使用CAD编辑软件的小伙伴肯定遇到过CAD文件打不开的现象,出现这种情况如果排除了文件自身收到损坏之外,那么大概率就是CAD文件的版本问题了,遇到低版本或高版本的文件就会容易出现这样的问题&a…

CAD怎么转换版本?转换器轻松转换

在工程制图和设计过程中,不同的CAD版本可能会导致文件不兼容的问题。有时候,我们需要将CAD文件从一个版本转换为另一个版本,以便进行进一步编辑或与其他人共享文件。这时候,CAD转换器就是一个非常实用的工具,它能够帮助…

cad哪个版本最好用?转换软件说明

cad哪个版本最好用?自上世纪问世以来,CAD早已作为制图工作的代表性工具,设计等相关领域的工作者们基本都离不开它。其发展到现在,更新迭代了很多版本,第一次使用可能不清楚哪一版更好用,个人比较推荐的是06…

cad版本怎么在线转换?软件操作更高效

如果你需要将一个CAD文件从一个版本转换为另一个版本,但是你没有安装需要的CAD软件,你可以尝试在线CAD转换。以下是一些步骤来帮助你在线转换CAD文件。 一些可以在线转换CAD文件版本的工具包括 CAD转换器:支持在线一键转换, 多种…

CAD文件版本如何转换?分享两种版本转换方法

CAD文件的版本怎么转换呢?大家在处理CAD文件的时候肯定会遇到文件打不开的现象,出现这种状况很可能就是CAD文件的版本与软件不匹配,有一种很好的解决方法就是转换CAD文件的版本,该如何转换呢?今天教大家两个好用的转换…

CAD好用的是哪个版本?分享一个在线转换版本的方法

CAD好用的是哪个版本?CAD版本越高,功能越多,越难上手,2004版之前的版本缺点太多。2004版就成为比较经典的CAD版本,使用起来流畅。对电脑配置要求不高,同样配置的电脑,04版会比高版跑的快很多&am…