新闻报道的未来:自动化新闻生成与爬虫技术

亿牛云.png

概述

自动化新闻生成是一种利用自然语言处理和机器学习技术,从结构化数据中提取信息并生成新闻文章的方法。它可以实现大规模、高效、多样的新闻内容生产。然而,要实现自动化新闻生成,首先需要获取可靠的数据源。这就需要使用爬虫技术,从互联网上抓取相关的新闻信息。本文将介绍如何使用Scrapy库,一个强大的Python爬虫框架,结合代理IP技术,从新浪新闻网站获取数据,并提供完整的代码示例和相关配置。

正文

1. 什么是自动化新闻生成

自动化新闻生成是一种利用自然语言处理(NLP)算法和机器学习模型,从结构化数据中提取信息并生成新闻文章的方法。它可以根据不同的数据类型、主题、风格和语言,构建完整的新闻报道,并实现大规模的新闻内容生产。

自动化新闻生成有许多优势,例如:

  • 可以快速地响应事件,提高新闻时效性
  • 可以覆盖更多的领域和角度,提高新闻多样性
  • 可以减少人工成本和错误,提高新闻质量
  • 可以根据用户的偏好和反馈,提高新闻个性化

2. 什么是爬虫技术

爬虫技术是一种程序或脚本,可以自动化地从互联网上获取数据,并将其存储或处理。在新闻报道中,爬虫技术用于从新闻网站中提取有关事件、事实和数据的信息。

爬虫技术有以下几个步骤:

  • 发送请求:向目标网站发送HTTP请求,获取网页内容
  • 解析内容:使用XPath或CSS选择器等方法,从网页内容中提取所需的数据
  • 存储数据:将提取到的数据存储到数据库或文件中
  • 循环抓取:根据网页中的链接或分页信息,继续发送请求,直到抓取完所有目标数据

3. 如何使用Scrapy和代理IP爬取新浪新闻数据

Scrapy是一个强大的Python爬虫框架,它可以实现高效、异步、可扩展的网络数据抓取。它具有以下特点:

  • 基于Twisted异步网络框架,可以同时处理多个请求,提高爬取速度
  • 提供了各种中间件、管道、扩展等组件,可以灵活地定制爬虫功能和逻辑
  • 提供了命令行工具和可视化界面,可以方便地创建、运行和管理爬虫项目

代理IP是一种隐藏真实IP地址的方法,可以避免被目标网站识别和封禁。使用代理IP有以下好处:

  • 可以突破地域限制,访问不同国家或地区的网站
  • 可以降低被目标网站检测到的风险,防止被封禁或降权
  • 可以提高爬取效率,减少网络延迟和拥塞

在这里,我们将介绍如何使用Scrapy库和代理IP技术,从新浪新闻网站抓取新闻数据。首先,确保已安装Scrapy库。

# 安装Scrapy
pip install scrapy

接下来,创建一个新的Scrapy项目:

scrapy startproject sina_news

接下来,创建一个新的Spider:

cd sina_news
scrapy genspider sina_news_spider news.sina.com.cn

现在,打开spiders/sina_news_spider.py文件,并添加以下代码:

import scrapyclass SinaNewsSpider(scrapy.Spider):name = 'sina_news_spider'allowed_domains = ['news.sina.com.cn']start_urls = ['http://news.sina.com.cn/']def parse(self, response):# 在这里编写爬取逻辑pass

接下来,我们需要配置代理IP。假设您使用亿牛云提供的代理IP服务,可以使用如下代码:

# 在settings.py文件中添加以下配置
import base64# 亿牛云 爬虫加强版 代理IP配置
PROXY_URL = 'http://域名:端口'
PROXY_USERNAME = '用户名'
PROXY_PASSWORD = '密码'# 定义一个代理IP中间件类
class ProxyMiddleware(object):# 重写请求处理方法def process_request(self, request, spider):# 获取 爬虫加强版 代理IP认证信息proxy_auth = f'{PROXY_USERNAME}:{PROXY_PASSWORD}'proxy_auth = base64.b64encode(proxy_auth.encode()).decode()# 设置请求头中的代理授权字段request.headers['Proxy-Authorization'] = f'Basic {proxy_auth}'# 设置请求的代理IP地址request.meta['proxy'] = PROXY_URLclass SinaNewsSpider(scrapy.Spider):name = 'sina_news_spider'allowed_domains = ['news.sina.com.cn']start_urls = ['http://news.sina.com.cn/']def parse(self, response):# 在这里编写爬取逻辑pass

parse方法中,您可以使用XPath或CSS选择器来提取所需的新闻数据。具体的数据提取逻辑将根据新浪新闻网站的HTML结构而定。例如,如果您想要抓取首页的头条新闻的标题、链接和时间,您可以使用以下代码:

def parse(self, response):# 提取首页的头条新闻的标题、链接和时间headlines = response.xpath("//div[@class='top_newslist']/ul/li")for headline in headlines:title = headline.xpath("./a/text()").get()link = headline.xpath("./a/@href").get()time = headline.xpath("./span/text()").get()# 将提取到的数据封装成一个字典,并返回给引擎yield {"title": title,"link": link,"time": time,}

如果您想要进一步抓取每个新闻链接中的正文内容,您可以使用以下代码:

def parse(self, response):# 提取首页的头条新闻的标题、链接和时间,并发送请求进入每个链接抓取正文内容headlines = response.xpath("//div[@class='top_newslist']/ul/li")for headline in headlines:title = headline.xpath("./a/text()").get()link = headline.xpath("./a/@href").get()time = headline.xpath("./span/text()").get()# 使用代理IP访问每个新闻链接,并传递标题和时间作为元数据proxy_auth = f'{PROXY_USERNAME}:{PROXY_PASSWORD}'proxy_auth = base64.b64encode(proxy_auth.encode()).decode()yield scrapy.Request(url=link, callback=self.parse_content, headers={'Proxy-Authorization': f'Basic {proxy_auth}'}, meta={"title": title, "time": time})def parse_content(self, response):# 提取每个新闻链接中的正文内容,并与元数据一起返回给引擎content = response.xpath("//div[@id='artibody']//text()")content = "".join(content.getall()).strip()title = response.meta["title"]time = response.meta["time"]# 将提取到的数据封装成一个字典,并返回给引擎yield {"title": title,"content": content,"time": time,}

这样,我们就完成了从新浪新闻网站爬取新闻数据的爬虫项目。您可以使用以下命令运行爬虫,并将数据保存到JSON文件中:

scrapy crawl sina_news_spider -o sina_news.json

结语

本文介绍了如何使用Scrapy库和代理IP技术,从新浪新闻网站获取数据,并提供了完整的代码示例和相关配置。这些数据可以为自动化新闻生成提供有力的支持,使新闻报道更加高效和多样化。自动化新闻生成和爬虫技术的结合代表着新闻报道的未来,值得我们进一步探索和应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/145188.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【AI视野·今日NLP 自然语言处理论文速览 第四十四期】Fri, 29 Sep 2023

AI视野今日CS.NLP 自然语言处理论文速览 Fri, 29 Sep 2023 Totally 45 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers MindShift: Leveraging Large Language Models for Mental-States-Based Problematic Smartphone Use Interve…

Source Insight 工具栏图标功能介绍

这篇文章并不介绍 Source Insight 的具体使用方法,这类教程网上有很多,这里只分析 Souce Insight 工具栏图标的功能。 文章目录 Source Insight 简介Souce Insight 工具栏文件操作新建(CtrlN)打开(CtrlO)保…

自学WEB后端02-基于Express框架完成一个交互留言板!

提示: 浏览器V8是JavaScript的前端运行环境 Node.js 是JavaScript 的后端运行环境 Node.js 中无法调用 DOM 和 BOM等浏览器内置 API 这个作业案例包含2部分内容, 第一部分是前端 前端完成界面内容CSS框架 第二部分是后端 完成用户留言存储&#xf…

overleaf杂谈-Springer文献格式问题

目录 overleaf写作问题记录1.Latex中的%问题(文本变成灰色)2.Springer文献格式问题2.1 新建reference.bib2.2 谷歌学术搜索文章并引用2.3 复制BibTex2.4 复制进reference.bib2.5 在sn-article.tex的\end{document}前添加语句2.6 引用文献2.7 Springer模板…

NLP 03(LSTM)

一、LSTM LSTM (Long Short-Term Memory) 也称长短时记忆结构,它是传统RNN的变体,与经典RNN相比: 能够有效捕捉长序列之间的语义关联缓解梯度消失或爆炸现象 LSTM的结构更复杂,它的核心结构可以分为四个部分去解析: 遗忘门、输入门、细胞状态、输出门 LSTM内部结构…

Android 使用Kotlin封装RecyclerView

文章目录 1.概述2.运行效果图3.代码实现3.1 扩展RecyclerView 3.2 扩展Adapter3.3 RecyclerView装饰绘制3.3.1 以图片实现分割线3.3.2 画网格线3.3.3空白的分割线3.3.4 不同方向上的分割线 3.4 使用方法 1.概述 在一个开源项目上看到了一个Android Kotlin版的RecyclerView封装…

Backblaze发布2023中期SSD故障数据质量报告

作为一家在2021年在美国纳斯达克上市的云端备份公司,Backblaze一直保持着对外定期发布HDD和SSD的故障率稳定性质量报告,给大家提供了一份真实应用场景下的稳定性分析参考数据。 本文我们主要看下Backblaze最新发布的2023中期SSD相关故障稳定性数据报告。…

[题]欧拉函数 #欧拉函数

目录 欧拉函数一、用公式求代码 二、线性筛法求欧拉函数扩展欧拉定理 欧拉函数 AcWing 873. 欧拉函数 一、用公式求 定义:1 ~ N 中与 N 互质的数的个数被称为欧拉函数,记为ϕ(N)。 怎么求呢?? 有一个公式: N p1a1 X…

RabbitMQ的工作模式——WorkQueues模式

1.工作队列模式 生产者代码 public class Producer_WorkQueues1 {public static void main(String[] args) throws IOException, TimeoutException {//1.创建连接工厂ConnectionFactory factory new ConnectionFactory();//2.设置参数factory.setHost("172.16.98.133&qu…

flutter开发实战-应用更新apk下载、安装apk、启动应用实现

flutter开发实战-应用更新apk下载、安装apk、启动应用实现 在开发过程中,经常遇到需要更新下载新版本的apk文件,之后进行应用更新apk下载、安装apk、启动应用。我们在flutter工程中实现下载apk,判断当前版本与需要更新安装的版本进行比对判断…

小谈设计模式(6)—依赖倒转原则

小谈设计模式(6)—依赖倒转原则 专栏介绍专栏地址专栏介绍 依赖倒转原则核心思想关键点分析abc 优缺点分析优点降低模块间的耦合度提高代码的可扩展性便于进行单元测试 缺点增加代码的复杂性需要额外的设计和开发工作 Java代码实现示例分析 总结 专栏介绍…

CIP或者EtherNET/IP中的PATH是什么含义?

目录 SegmentPATH举例 最近在学习EtherNET/IP,PATH不太明白,翻了翻规范,在这里记个笔记。下面的叙述可能是中英混合,有一些是规范中的原文我直接搬过来的。我翻译的不准确。 Segment PATH是CIP Segment中的一个分类。要了解PATH…

【JVM】第四篇 垃圾收集器ParNewCMS底层三色标记算法详解

导航 一. 垃圾收集算法详解1. 分代收集算法2. 标记-复制算法3. 标记-清除算法4. 标记-整理算法二. 垃圾收集器详解1. Serial收集器2. Parallel Scavenge收集器3. ParNew收集器4. CMS收集器三. 垃圾收集底层三色标记算法实现原理1. 垃圾收集底层使用三色标记算法的原因?2. 垃圾…

Konva基本处理流程和相关架构设计

前言 canvas是使用JavaScript基于上下文对象进行2D图形的绘制的HTML元素,通常用于动画、游戏画面、数据可视化、图片编辑以及实时视频处理等方面。基于Canvas之上,诞生了例如 PIXI、ZRender、Fabric、Konva等 Canvas渲染引擎,兼顾易用的同时…

【论文极速读】Prompt Tuning——一种高效的LLM模型下游任务适配方式

【论文极速读】Prompt Tuning——一种高效的LLM模型下游任务适配方式 FesianXu 20230928 at Baidu Search Team 前言 Prompt Tuning是一种PEFT方法(Parameter-Efficient FineTune),旨在以高效的方式对LLM模型进行下游任务适配,本…

基于SpringBoot的服装生产管理系统的设计与实现

目录 前言 一、技术栈 二、系统功能介绍 登录界面的实现 系统主界面的实现 用户管理模块的实现 人事安排管理模块的实现 工资管理模块的实现 考勤管理模块的实现 样板管理模块的实现 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 本协力服装厂服装生…

AI编程助手 Amazon CodeWhisperer 全面解析与实践

目录 引言Amazon CodeWhisperer简介智能编程助手智能代码建议代码自动补全 提升代码质量代码质量提升安全性检测 支持多平台多语言 用户体验和系统兼容性用户体验文档和学习资源个性化体验系统兼容性 功能全面性和代码质量功能全面性代码生成质量和代码安全性 CodeWhisperer的代…

常见应用层协议

一.HTTP(超文本传输协议) HTTP 和 HTTPS 二.FTP(文件传输协议) 三.SMTP(简单邮件传输协议) 四.POP3(邮局协议版本3) 五.IMAP(互联网消息访问协议) 六.DNS&am…

《Python趣味工具》——ppt的操作(2)

在上次,我们对PPT进行了简单的处理;本次,我们要将PPT中的文本内容写入到 Word 文档中并添加标题,让 Word 文档看上去结构清晰,方便使用。 文章目录 一、安装docx模块:二、从PPT中转移文字:1. 创…

安卓机型不需要解锁bl 不需要root 即可安装模块 框架 VirtualXposed使用步骤分析

​​​​​​安卓玩机教程---全机型安卓4----安卓12 框架xp edx lsp安装方法【一】 安卓系列机型 框架LSP 安装步骤 支持多机型 LSP框架通用安装步骤 通过以上两个博文基本可以了解手机正常安装框架的步骤。但很多机型局限于不能解锁bl和root,那么这些机型能不能使…