【深度学习实验】卷积神经网络(六):自定义卷积神经网络模型(VGG)实现图片多分类任务

目录

一、实验介绍

二、实验环境

1. 配置虚拟环境

2. 库版本介绍

三、实验内容

0. 导入必要的工具包

1. 构建数据集(CIFAR10Dataset)

a. read_csv_labels()

b. CIFAR10Dataset

2. 构建模型(FeedForward)

3.整合训练、评估、预测过程(Runner)

4. __main__

预测结果

5. 代码整合


一、实验介绍

        本实验实现了一个简化版VGG网络,并基于此完成图像分类任务。
       

        VGG网络是深度卷积神经网络中的经典模型之一,由牛津大学计算机视觉组(Visual Geometry Group)提出。它在2014年的ImageNet图像分类挑战中取得了优异的成绩(分类任务第二,定位任务第一),被广泛应用于图像分类、目标检测和图像生成等任务。

        VGG网络的主要特点是使用了非常小的卷积核尺寸(通常为3x3)和更深的网络结构。该网络通过多个卷积层和池化层堆叠在一起,逐渐增加网络的深度,从而提取图像的多层次特征表示。VGG网络的基本构建块是由连续的卷积层组成,每个卷积层后面跟着一个ReLU激活函数。在每个卷积块的末尾,都会添加一个最大池化层来减小特征图的尺寸。VGG网络的这种简单而有效的结构使得它易于理解和实现,并且在不同的任务上具有很好的泛化性能。

        VGG网络有几个不同的变体,如VGG11、VGG13、VGG16和VGG19,它们的数字代表网络的层数。这些变体在网络深度和参数数量上有所区别,较深的网络通常具有更强大的表示能力,但也更加复杂。

二、实验环境

    本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

三、实验内容

ChatGPT:

        卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、计算机视觉和模式识别等领域。它的设计灵感来自于生物学中视觉皮层的工作原理。

        卷积神经网络通过多个卷积层、池化层全连接层组成。

  • 卷积层主要用于提取图像的局部特征,通过卷积操作和激活函数的处理,可以学习到图像的特征表示。
  • 池化层则用于降低特征图的维度,减少参数数量,同时保留主要的特征信息。
  • 全连接层则用于将提取到的特征映射到不同类别的概率上,进行分类或回归任务。

        卷积神经网络在图像处理方面具有很强的优势,它能够自动学习到具有层次结构的特征表示,并且对平移、缩放和旋转等图像变换具有一定的不变性。这些特点使得卷积神经网络成为图像分类、目标检测、语义分割等任务的首选模型。除了图像处理,卷积神经网络也可以应用于其他领域,如自然语言处理和时间序列分析。通过将文本或时间序列数据转换成二维形式,可以利用卷积神经网络进行相关任务的处理。

0. 导入必要的工具包

import torch 
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision.io import read_image
import matplotlib.pyplot as plt
import os

1. 构建数据集(CIFAR10Dataset)

a. read_csv_labels()

        从CSV文件中读取标签信息并返回一个标签字典。

def read_csv_labels(fname):"""读取fname来给标签字典返回一个文件名"""with open(fname, 'r') as f:# 跳过文件头行(列名)lines = f.readlines()[1:]tokens = [l.rstrip().split(',') for l in lines]return dict(((name, label) for name, label in tokens))
  •  使用open函数打开指定文件名的CSV文件,并将文件对象赋值给变量f。这里使用'r'参数以只读模式打开文件。

  • 使用文件对象的readlines()方法读取文件的所有行,并将结果存储在名为lines的列表中。通过切片操作[1:],跳过了文件的第一行(列名),将剩余的行存储在lines列表中。

  • 列表推导式(list comprehension):对lines列表中的每一行进行处理。对于每一行,使用rstrip()方法去除行末尾的换行符,并使用split(',')方法将行按逗号分割为多个标记。最终,将所有行的标记组成的子列表存储在tokens列表中。

  • 使用字典推导式(dictionary comprehension)将tokens列表中的子列表转换为字典。对于tokens中的每个子列表,将子列表的第一个元素作为键(name),第二个元素作为值(label),最终返回一个包含这些键值对的字典。

b. CIFAR10Dataset

class CIFAR10Dataset(Dataset):def __init__(self, folder_path, fname):self.labels = read_csv_labels(os.path.join(folder_path, fname))self.folder_path = os.path.join(folder_path, 'train')def __len__(self):return len(self.labels)def __getitem__(self, idx):img = read_image(self.folder_path + '/' + str(idx + 1) + '.png')label = self.labels[str(idx + 1)]return img, torch.tensor(int(label))
  • 构造函数:

    • 接受两个参数

      • folder_path表示数据集所在的文件夹路径

      • fname表示包含标签信息的文件名。

    • 调用read_csv_labels函数,传递folder_pathfname作为参数,以读取CSV文件中的标签信息,并将返回的标签字典存储在self.labels变量中。

    • 通过拼接folder_path和字符串'train'来构建数据集的文件夹路径,将结果存储在self.folder_path变量中。

  • def __len__(self)

    • 这是CIFAR10Dataset类的方法,用于返回数据集的长度,即样本的数量。

  • def __getitem__(self, idx): 这是CIFAR10Dataset类的方法,用于根据给定的索引idx获取数据集中的一个样本。它首先根据索引idx构建图像文件的路径,并调用read_image函数来读取图像数据,将结果存储在img变量中。然后,它通过将索引转换为字符串,并使用该字符串作为键来从self.labels字典中获取相应的标签,将结果存储在label变量中。最后,它返回一个元组,包含图像数据和经过torch.tensor转换的标签。

2. 构建模型(FeedForward)

        参考前文:

【深度学习实验】卷积神经网络(五):深度卷积神经网络经典模型——VGG网络(卷积层、池化层、全连接层)_QomolangmaH的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_63834988/article/details/133350927?spm=1001.2014.3001.5501

#  每个卷积块由Conv2d卷积 + BatchNorm2d(批量标准化处理) + ReLU激活层组成
def conv_layer(chann_in, chann_out, k_size, p_size):layer = nn.Sequential(nn.Conv2d(chann_in, chann_out, kernel_size=k_size, padding=p_size),nn.BatchNorm2d(chann_out),nn.ReLU())return layer# vgg卷积模块是由几个相同的卷积块以及最大池化组成
def vgg_conv_block(in_list, out_list, k_list, p_list, pooling_k, pooling_s):layers = [conv_layer(in_list[i], out_list[i], k_list[i], p_list[i]) for i in range(len(in_list)) ]layers += [nn.MaxPool2d(kernel_size = pooling_k, stride = pooling_s)]return nn.Sequential(*layers)# vgg全连接层由Linear + BatchNorm1d + ReLU组成
def vgg_fc_layer(size_in, size_out):layer = nn.Sequential(nn.Linear(size_in, size_out),nn.BatchNorm1d(size_out),nn.ReLU())return layer# 为了简化,我们少使用了几层卷积层,方便大家使用
class VGG_S(nn.Module):def __init__ (self, num_classes):super().__init__()self.layer1 = vgg_conv_block([3,64], [64,64], [3,3], [1,1], 2, 2)   self.layer2 = vgg_conv_block([64,128], [128,128], [3,3], [1,1], 2, 2)self.layer3 = vgg_conv_block([128,256,256], [256,256,256], [3,3,3], [1,1,1], 2, 2)# 全连接层self.layer4 = vgg_fc_layer(4096, 1024)# Final layerself.layer5 = nn.Linear(1024, num_classes)def forward(self, x):out = self.layer1(x)out = self.layer2(out)vgg16_features = self.layer3(out)out = vgg16_features.view(out.size(0), -1)out = self.layer4(out)out = self.layer5(out)return out

3.整合训练、评估、预测过程(Runner)

        参考前文:

【深度学习实验】前馈神经网络(九):整合训练、评估、预测过程(Runner)_QomolangmaH的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_63834988/article/details/133219448?spm=1001.2014.3001.5501

        (略有改动:)

class Runner(object):def __init__(self, model, optimizer, loss_fn, metric=None):self.model = modelself.optimizer = optimizerself.loss_fn = loss_fn# 用于计算评价指标self.metric = metric# 记录训练过程中的评价指标变化self.dev_scores = []# 记录训练过程中的损失变化self.train_epoch_losses = []self.dev_losses = []# 记录全局最优评价指标self.best_score = 0# 模型训练阶段def train(self, train_loader, dev_loader=None, **kwargs):# 将模型设置为训练模式,此时模型的参数会被更新self.model.train()num_epochs = kwargs.get('num_epochs', 0)log_steps = kwargs.get('log_steps', 100)save_path = kwargs.get('save_path','best_model.pth')eval_steps = kwargs.get('eval_steps', 0)# 运行的step数,不等于epoch数global_step = 0if eval_steps:if dev_loader is None:raise RuntimeError('Error: dev_loader can not be None!')if self.metric is None:raise RuntimeError('Error: Metric can not be None')# 遍历训练的轮数for epoch in range(num_epochs):total_loss = 0# 遍历数据集for step, data in enumerate(train_loader):x, y = datalogits = self.model(x.float())loss = self.loss_fn(logits, y.long())total_loss += lossif step%log_steps == 0:print(f'loss:{loss.item():.5f}')loss.backward()self.optimizer.step()self.optimizer.zero_grad()# 每隔一定轮次进行一次验证,由eval_steps参数控制,可以采用不同的验证判断条件if eval_steps != 0 :if (epoch+1) % eval_steps ==  0:dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)print(f'[Evalute] dev score:{dev_score:.5f}, dev loss:{dev_loss:.5f}')if dev_score > self.best_score:self.save_model(f'model_{epoch+1}.pth')print(f'[Evaluate]best accuracy performance has been updated: {self.best_score:.5f}-->{dev_score:.5f}')self.best_score = dev_score# 验证过程结束后,请记住将模型调回训练模式   self.model.train()global_step += 1# 保存当前轮次训练损失的累计值train_loss = (total_loss/len(train_loader)).item()self.train_epoch_losses.append((global_step,train_loss))self.save_model(f'{save_path}.pth')   print('[Train] Train done')# 模型评价阶段def evaluate(self, dev_loader, **kwargs):assert self.metric is not None# 将模型设置为验证模式,此模式下,模型的参数不会更新self.model.eval()global_step = kwargs.get('global_step',-1)total_loss = 0self.metric.reset()for batch_id, data in enumerate(dev_loader):x, y = datalogits = self.model(x.float())loss = self.loss_fn(logits, y.long()).item()total_loss += loss self.metric.update(logits, y)dev_loss = (total_loss/len(dev_loader))self.dev_losses.append((global_step, dev_loss))dev_score = self.metric.accumulate()self.dev_scores.append(dev_score)return dev_score, dev_loss# 模型预测阶段,def predict(self, x, **kwargs):self.model.eval()logits = self.model(x)return logits# 保存模型的参数def save_model(self, save_path):torch.save(self.model.state_dict(), save_path)# 读取模型的参数def load_model(self, model_path):self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))

4. __main__

if __name__ == '__main__':batch_size = 20# 构建训练集train_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')train_iter = DataLoader(train_data, batch_size=batch_size)# 构建测试集test_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')test_iter = DataLoader(test_data, batch_size=batch_size)# 模型训练num_classes = 10# 定义模型model = VGG_S(num_classes)# 定义损失函数loss_fn = F.cross_entropy# 定义优化器optimizer = torch.optim.SGD(model.parameters(), lr=0.1)runner = Runner(model, optimizer, loss_fn, metric=None)runner.train(train_iter, num_epochs=10, save_path='chapter_5')# 模型预测runner.load_model('chapter_5.pth')x, label = next(iter(test_iter))predict = torch.argmax(runner.predict(x.float()), dim=1)print('predict:', predict)print('  label:', label)

预测结果

predict: tensor([6, 1, 9, 6, 1, 1, 6, 7, 0, 3, 4, 7, 7, 1, 9, 0, 9, 5, 3, 6])label: tensor([6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6])

5. 代码整合

# 导入必要的工具包
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision.io import read_image
import matplotlib.pyplot as plt
import osdef read_csv_labels(fname):"""读取fname来给标签字典返回一个文件名"""with open(fname, 'r') as f:# 跳过文件头行(列名)lines = f.readlines()[1:]tokens = [l.rstrip().split(',') for l in lines]return dict(((name, label) for name, label in tokens))class CIFAR10Dataset(Dataset):def __init__(self, folder_path, fname):self.labels = read_csv_labels(os.path.join(folder_path, fname))self.folder_path = os.path.join(folder_path, 'train')def __len__(self):return len(self.labels)def __getitem__(self, idx):img = read_image(self.folder_path + '/' + str(idx + 1) + '.png')label = self.labels[str(idx + 1)]return img, torch.tensor(int(label))#  每个卷积块由Conv2d卷积 + BatchNorm2d(批量标准化处理) + ReLU激活层组成
def conv_layer(chann_in, chann_out, k_size, p_size):layer = nn.Sequential(nn.Conv2d(chann_in, chann_out, kernel_size=k_size, padding=p_size),nn.BatchNorm2d(chann_out),nn.ReLU())return layer# vgg卷积模块是由几个相同的卷积块以及最大池化组成
def vgg_conv_block(in_list, out_list, k_list, p_list, pooling_k, pooling_s):layers = [conv_layer(in_list[i], out_list[i], k_list[i], p_list[i]) for i in range(len(in_list))]layers += [nn.MaxPool2d(kernel_size=pooling_k, stride=pooling_s)]return nn.Sequential(*layers)# vgg全连接层由Linear + BatchNorm1d + ReLU组成
def vgg_fc_layer(size_in, size_out):layer = nn.Sequential(nn.Linear(size_in, size_out),nn.BatchNorm1d(size_out),nn.ReLU())return layer# 为了简化,我们少使用了几层卷积层,方便大家使用
class VGG_S(nn.Module):def __init__(self, num_classes):super().__init__()self.layer1 = vgg_conv_block([3, 64], [64, 64], [3, 3], [1, 1], 2, 2)self.layer2 = vgg_conv_block([64, 128], [128, 128], [3, 3], [1, 1], 2, 2)self.layer3 = vgg_conv_block([128, 256, 256], [256, 256, 256], [3, 3, 3], [1, 1, 1], 2, 2)# 全连接层self.layer4 = vgg_fc_layer(4096, 1024)# Final layerself.layer5 = nn.Linear(1024, num_classes)def forward(self, x):out = self.layer1(x)out = self.layer2(out)vgg16_features = self.layer3(out)out = vgg16_features.view(out.size(0), -1)out = self.layer4(out)out = self.layer5(out)return outclass Runner(object):def __init__(self, model, optimizer, loss_fn, metric=None):self.model = modelself.optimizer = optimizerself.loss_fn = loss_fn# 用于计算评价指标self.metric = metric# 记录训练过程中的评价指标变化self.dev_scores = []# 记录训练过程中的损失变化self.train_epoch_losses = []self.dev_losses = []# 记录全局最优评价指标self.best_score = 0# 模型训练阶段def train(self, train_loader, dev_loader=None, **kwargs):# 将模型设置为训练模式,此时模型的参数会被更新self.model.train()num_epochs = kwargs.get('num_epochs', 0)log_steps = kwargs.get('log_steps', 100)save_path = kwargs.get('save_path', 'best_model.pth')eval_steps = kwargs.get('eval_steps', 0)# 运行的step数,不等于epoch数global_step = 0if eval_steps:if dev_loader is None:raise RuntimeError('Error: dev_loader can not be None!')if self.metric is None:raise RuntimeError('Error: Metric can not be None')# 遍历训练的轮数for epoch in range(num_epochs):total_loss = 0# 遍历数据集for step, data in enumerate(train_loader):x, y = datalogits = self.model(x.float())loss = self.loss_fn(logits, y.long())total_loss += lossif step % log_steps == 0:print(f'loss:{loss.item():.5f}')loss.backward()self.optimizer.step()self.optimizer.zero_grad()# 每隔一定轮次进行一次验证,由eval_steps参数控制,可以采用不同的验证判断条件if eval_steps != 0:if (epoch + 1) % eval_steps == 0:dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)print(f'[Evalute] dev score:{dev_score:.5f}, dev loss:{dev_loss:.5f}')if dev_score > self.best_score:self.save_model(f'model_{epoch + 1}.pth')print(f'[Evaluate]best accuracy performance has been updated: {self.best_score:.5f}-->{dev_score:.5f}')self.best_score = dev_score# 验证过程结束后,请记住将模型调回训练模式self.model.train()global_step += 1# 保存当前轮次训练损失的累计值train_loss = (total_loss / len(train_loader)).item()self.train_epoch_losses.append((global_step, train_loss))self.save_model(f'{save_path}.pth')print('[Train] Train done')# 模型评价阶段def evaluate(self, dev_loader, **kwargs):assert self.metric is not None# 将模型设置为验证模式,此模式下,模型的参数不会更新self.model.eval()global_step = kwargs.get('global_step', -1)total_loss = 0self.metric.reset()for batch_id, data in enumerate(dev_loader):x, y = datalogits = self.model(x.float())loss = self.loss_fn(logits, y.long()).item()total_loss += lossself.metric.update(logits, y)dev_loss = (total_loss / len(dev_loader))self.dev_losses.append((global_step, dev_loss))dev_score = self.metric.accumulate()self.dev_scores.append(dev_score)return dev_score, dev_loss# 模型预测阶段,def predict(self, x, **kwargs):self.model.eval()logits = self.model(x)return logits# 保存模型的参数def save_model(self, save_path):torch.save(self.model.state_dict(), save_path)# 读取模型的参数def load_model(self, model_path):self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))if __name__ == '__main__':batch_size = 20# 构建训练集train_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')train_iter = DataLoader(train_data, batch_size=batch_size)# 构建测试集test_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')test_iter = DataLoader(test_data, batch_size=batch_size)# 模型训练num_classes = 10# 定义模型model = VGG_S(num_classes)# 定义损失函数loss_fn = F.cross_entropy# 定义优化器optimizer = torch.optim.SGD(model.parameters(), lr=0.1)runner = Runner(model, optimizer, loss_fn, metric=None)runner.train(train_iter, num_epochs=10, save_path='chapter_5')# 模型预测runner.load_model('chapter_5.pth')x, label = next(iter(test_iter))predict = torch.argmax(runner.predict(x.float()), dim=1)print('predict:', predict)print('  label:', label)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/146808.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端页面初步开发

<template><div><el-card class"box-card" style"height: 620px"><el-input v-model"query.name" style"width:200px" placeholder"请输入用户姓名"></el-input>&nbsp&nbsp&nbsp…

贪心找性质+dp表示+矩阵表示+线段树维护:CF573D

比较套路的题目 首先肯定贪心一波&#xff0c;两个都排序后尽量相连。我一开始猜最多跨1&#xff0c;但其实最多跨2&#xff0c;考虑3个人的情况&#xff1a; 我们发现第3个人没了&#xff0c;所以可以出现跨2的情况 然后直接上dp&#xff0c;由 i − 1 , i − 2 , i − 3 i…

input输入表头保存excel文件

input输入表头 input输入表头 &#xff08;input内除了/&#xff0c;空格 回车 标点符号等 全部作为单元格分隔符&#xff09;保存/storage/emulated/0/代码文件/ 没有就创建文件名命名方法&#xff1a;编号. 库 时间戳嗨&#xff01;听说你有个需求&#xff0c;想根据用户输入…

数码产品数码配件无线键盘等出口欧盟CE-RED认证测试办理

数码产品数码配件无线键盘CE-RED认证测试办理 无线产品CE-RED认证进入东欧市场规定&#xff1a; 在通信终端设备和无线产品在这些/地区合法销售之前&#xff0c;必须按照 RED 指令进行测试&#xff0c;并且还必须提供 CE 标志。无线远程控制产品必须符合 RED 指令的 REDEU 要…

2021-06-18 51蛋骗鸡实现流水灯累积点亮全亮后闪烁从头开始循环

缘由怎么在单片机上实现这个功能呢_有问必答-CSDN问答 #include "REG52.h" sbit K1 P1^5; sbit K2 P1^6; sbit K3 P1^7; sbit K4 P1^4; //sbit LED1P1^0; //sbit LED2P1^1; //sbit LED3P1^2; //sbit LED4P1^3; bit k1; unsigned char code SmZiFu[]{63,6,91,79,…

数字乡村包括哪些方面?数字乡村应用介绍

数字乡村是指利用物联网、数字化和智能化技术&#xff0c;借助现代数字智能产品、高效信息服务和物联网基础设施&#xff0c;以提高农村居民生活质量&#xff0c;助力拓展经济发展前景。 创建数字村庄有助于缩小城乡社区之间的差距&#xff0c;保障每个人都能平等地享受科技发展…

Observer

Observer 动机 在软件构建过程中&#xff0c;我们需要为某些对象建立一种“通知依赖关系”——一个对象&#xff08;目标对象&#xff09;的状态发生改变&#xff0c;所有的依赖对象&#xff08;观察者对象&#xff09;都将得到通知。如果这样的依赖关系过于紧密&#xff0c;…

在移动固态硬盘上安装Ubuntu系统和ROS2

目录 原视频准备烧录 原视频 b站鱼香ros 准备 1.在某宝上买一个usb移动固态硬盘或固态U盘&#xff0c;至少64G 2.下载鱼香ros烧录工具 下载第二个就行了&#xff0c;不然某网盘的速度下载全部要一天 下载后&#xff0c;选择FishROS2OS制作工具压缩包&#xff0c;进行解压…

国庆节看这里,有你意想不到的收货!(建议收藏)

计算机视觉研究院专栏 作者&#xff1a;Edison_G “国庆长假&#xff0c;每个人都安耐不住了&#xff0c;但是&#xff0c;在你静心、游玩的时候&#xff0c;还是可以阅读今天的分享&#xff0c;干货满满&#xff01; 公众号ID&#xff5c;ComputerVisionGzq 学习群&#xff5c…

【STM32】IAP升级03关闭总中断,检测栈顶指针

IAP升级方法 IAP升级时需要关闭总中断 TM32在使用时有时需要禁用全局中断&#xff0c;比如MCU在升级过程中需禁用外部中断&#xff0c;防止升级过程中外部中断触发导致升级失败。 ARM MDK中提供了如下两个接口来禁用和开启总中断&#xff1a; __disable_irq(); // 关闭总中…

【Django】4 Django模型

每个模型是一个Python 类&#xff0c;集成django.db.models.Modle类 该模型的每个属性表示一个数据库表字段 通过API 自动生成数据库访问 .../sign/modles.py 文件&#xff0c;通过模型完成表创建。 TypeError: ForeignKey.__init__() missing 1 required positional argumen…

leetcode-239-滑动窗口最大值

题意描述&#xff1a; 给你一个整数数组 nums&#xff0c;有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例&#xff1a; 输入&#xff1a;nums [1,3,-1,…

聊聊常见的IO模型 BIO/NIO/AIO 、DIO、多路复用等IO模型

聊聊常见的IO模型 BIO/NIO/AIO/DIO、IO多路复用等IO模型 文章目录 一、前言1. 什么是IO模型2. 为什么需要IO模型 二、常见的IO模型1. 同步阻塞IO&#xff08;Blocking IO&#xff0c;BIO&#xff09;2. 同步非阻塞IO&#xff08;Non-blocking IO&#xff0c;NIO&#xff09;3.…

C++核心编程--对象篇

4.2、对象 4.2.1、对象的初始化和清理 用于对对象进行初始化设置&#xff0c;以及对象销毁前的清理数据的设置。 构造函数和析构函数 防止对象初始化和清理也是非常重要的安全问题 一个对象或变量没有初始化状态&#xff0c;对其使用后果是未知的同样使用完一个对象或变量&…

Mysql主从复制数据架构全面解读

大家好&#xff0c;我是山子&#xff0c;今天给大家分析Mysql 实现主从复制的方方面面&#xff0c;主从复制当然也是我们做读写分离的前提&#xff0c;以下内容是从各网络平台摘录整理总结归纳在一起的&#xff1b;内容已经从主从复制的各方面的维度进行了阐述&#xff1b;非常…

Airtool for Mac——高效便捷的系统菜单栏网络工具!

在我们的数字化生活中&#xff0c;对于网络连接的稳定性和速度有着越来越高的需求。为了满足您对网络质量的实时监测和分析的需求&#xff0c;我们向大家介绍一款强大的Mac系统菜单栏网络工具——Airtool&#xff01; Airtool是一款专为Mac设计的网络工具&#xff0c;它能够提…

JUC第十三讲:JUC锁: ReentrantLock详解

JUC第十三讲&#xff1a;JUC锁: ReentrantLock详解 本文是JUC第十三讲&#xff0c;JUC锁&#xff1a;ReentrantLock详解。可重入锁 ReentrantLock 的底层是通过 AbstractQueuedSynchronizer 实现&#xff0c;所以先要学习上一章节 AbstractQueuedSynchronizer 详解。 文章目录 …

java并发编程 守护线程 用户线程 main

经常使用线程&#xff0c;没有对守护线程和用户线程的区别做彻底了解 下面写4个例子来验证一下 源码如下 /* Whether or not the thread is a daemon thread. */ private boolean daemon false;/*** Marks this thread as either a {linkplain #isDaemon daemon} thread*…

【Java 进阶篇】使用 JDBC 更新数据详解

在关系型数据库中&#xff0c;更新数据是一项常见的任务。通过Java JDBC&#xff08;Java Database Connectivity&#xff09;&#xff0c;我们可以使用Java编程语言来执行更新操作&#xff0c;例如修改、删除或插入数据。本文将详细介绍如何使用JDBC来进行数据更新操作&#x…

第 365 场 LeetCode 周赛题解

A 有序三元组中的最大值 I 参考 B B B 题做法… class Solution { public:using ll long long;long long maximumTripletValue(vector<int> &nums) {int n nums.size();vector<int> suf(n);partial_sum(nums.rbegin(), nums.rend(), suf.rbegin(), [](int x…