机器学习必修课 - 编码分类变量 encoding categorical variables

1. 数据预处理和数据集分割

import pandas as pd
from sklearn.model_selection import train_test_split
  • 导入所需的Python库
!git clone https://github.com/JeffereyWu/Housing-prices-data.git
  • 下载数据集
# Read the data
X = pd.read_csv('/content/Housing-prices-data/train.csv', index_col='Id') 
X_test = pd.read_csv('/content/Housing-prices-data/test.csv', index_col='Id')
  • 使用Pandas的read_csv函数从CSV文件中读取数据,分别读取了训练数据(train.csv)和测试数据(test.csv),并将数据的索引列设置为’Id’。
# Remove rows with missing target, separate target from predictors
X.dropna(axis=0, subset=['SalePrice'], inplace=True)
y = X.SalePrice
X.drop(['SalePrice'], axis=1, inplace=True)
  • 删除了训练数据中带有缺失目标值(‘SalePrice’)的行。
  • 然后,将目标值(房屋销售价格)存储在变量y中,并从特征中删除了目标列,以便在后续的训练中使用特征数据。
# To keep things simple, we'll drop columns with missing values
cols_with_missing = [col for col in X.columns if X[col].isnull().any()] 
X.drop(cols_with_missing, axis=1, inplace=True)
X_test.drop(cols_with_missing, axis=1, inplace=True)
  • 删除数据中带有缺失值的列。
  • 通过遍历每一列,使用X[col].isnull().any()来检查每列是否包含任何缺失值,如果某列中至少有一个缺失值,就将其列名添加到cols_with_missing列表中。
  • 使用drop方法将这些带有缺失值的列从训练数据X和测试数据X_test中删除。
# Break off validation set from training data
X_train, X_valid, y_train, y_valid = train_test_split(X, y,train_size=0.8, test_size=0.2,random_state=0)
  • 使用train_test_split函数将训练数据X和目标值y分成训练集(X_trainy_train)和验证集(X_validy_valid)。
  • train_size参数指定了训练集的比例(80%),test_size参数指定了验证集的比例(20%),random_state参数用于控制随机分割的种子,以确保每次运行代码时分割结果都一样。

2. 评估不同方法在机器学习模型上的性能

from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error# function for comparing different approaches
def score_dataset(X_train, X_valid, y_train, y_valid):model = RandomForestRegressor(n_estimators=100, random_state=0)model.fit(X_train, y_train)preds = model.predict(X_valid)return mean_absolute_error(y_valid, preds)

3. 从训练数据和验证数据中选择只包含数值类型特征(列)的子集

drop_X_train = X_train.select_dtypes(exclude=['object'])
drop_X_valid = X_valid.select_dtypes(exclude=['object'])
  • 使用Pandas中的select_dtypes方法,它允许你根据数据类型来筛选数据框中的列。
  • exclude=['object']参数指定了要排除的数据类型是’object’类型,通常’object’类型表示非数值型数据,例如字符串或类别数据。
print("MAE from Approach 1 (Drop categorical variables):")
print(score_dataset(drop_X_train, drop_X_valid, y_train, y_valid))

MAE from Approach 1 (Drop categorical variables):
17837.82570776256

4. 查看训练数据和验证数据中特定列('Condition2’列)的唯一值

print("Unique values in 'Condition2' column in training data:", X_train['Condition2'].unique())
print("\nUnique values in 'Condition2' column in validation data:", X_valid['Condition2'].unique())
  • X_train['Condition2'].unique()的部分用于获取训练数据中’Condition2’列中的所有不重复的数值。这可以帮助你了解这一列包含哪些不同的数值或类别。
  • 输出验证数据中’Condition2’列的唯一值,同样使用了X_valid['Condition2'].unique()
  • 这可以帮助你了解验证数据中这一列的不同数值或类别,通常用于检查验证数据是否与训练数据具有相似的分布,以确保模型在新数据上的泛化性能。

Unique values in ‘Condition2’ column in training data: [‘Norm’ ‘PosA’ ‘Feedr’ ‘PosN’ ‘Artery’ ‘RRAe’]

Unique values in ‘Condition2’ column in validation data: [‘Norm’ ‘RRAn’ ‘RRNn’ ‘Artery’ ‘Feedr’ ‘PosN’]

如果你现在编写代码来执行以下操作:

  • 在训练数据上训练一个有序编码器(ordinal encoder)。
  • 使用该编码器来转换训练数据和验证数据。

那么你将会遇到一个错误。

  • 如果验证数据包含训练数据中没有出现的值,编码器将会报错,因为这些值没有与之对应的整数标签。
  • 验证数据中的’Condition2’列包含了值’RRAn’和’RRNn’,但这些值在训练数据中并没有出现。因此,如果我们尝试使用Scikit-learn中的有序编码器,代码将会抛出错误。

5. 找出哪些列可以进行有序编码(ordinal encoding),哪些列需要从数据集中删除

# Categorical columns in the training data
object_cols = [col for col in X_train.columns if X_train[col].dtype == "object"]# Columns that can be safely ordinal encoded
good_label_cols = [col for col in object_cols if set(X_valid[col]).issubset(set(X_train[col]))]# Problematic columns that will be dropped from the dataset
bad_label_cols = list(set(object_cols)-set(good_label_cols))print('Categorical columns that will be ordinal encoded:', good_label_cols)
print('\nCategorical columns that will be dropped from the dataset:', bad_label_cols)
  • 创建了一个名为object_cols的列表,用于存储训练数据X_train中的所有数据类型为"object"(通常表示字符串或类别型数据)的列。
  • 创建了一个名为good_label_cols的列表,用于存储可以安全进行有序编码的列。这些列的特点是验证数据中的所有唯一值都存在于训练数据的相应列中。通过使用set来比较验证数据和训练数据中的唯一值,可以确定哪些列可以进行有序编码,因为它们的唯一值是一致的。
  • 创建了一个名为bad_label_cols的列表,用于存储需要从数据集中删除的问题列。这些列包含了一些在验证数据中出现但在训练数据中没有出现的唯一值,因此无法进行有序编码,需要在数据预处理中删除。

Categorical columns that will be ordinal encoded: [‘MSZoning’, ‘Street’, ‘LotShape’, ‘LandContour’, ‘Utilities’, ‘LotConfig’, ‘LandSlope’, ‘Neighborhood’, ‘Condition1’, ‘BldgType’, ‘HouseStyle’, ‘RoofStyle’, ‘Exterior1st’, ‘Exterior2nd’, ‘ExterQual’, ‘ExterCond’, ‘Foundation’, ‘Heating’, ‘HeatingQC’, ‘CentralAir’, ‘KitchenQual’, ‘PavedDrive’, ‘SaleType’, ‘SaleCondition’]

Categorical columns that will be dropped from the dataset: [‘Functional’, ‘Condition2’, ‘RoofMatl’]

6. 对数据进行有序编码

from sklearn.preprocessing import OrdinalEncoder# Drop categorical columns that will not be encoded
label_X_train = X_train.drop(bad_label_cols, axis=1)
label_X_valid = X_valid.drop(bad_label_cols, axis=1)# Apply ordinal encoder 
ordinal_encoder = OrdinalEncoder()
label_X_train[good_label_cols] = ordinal_encoder.fit_transform(X_train[good_label_cols])
label_X_valid[good_label_cols] = ordinal_encoder.transform(X_valid[good_label_cols])
  • 删除不需要进行编码的分类列,bad_label_cols列表中包含了需要删除的列的名称。
  • 使用fit_transform方法将编码器拟合到训练数据的good_label_cols列上,并将结果存储在label_X_train中。
  • 使用transform方法将同样的编码器应用到验证数据的good_label_cols列上,并将结果存储在label_X_valid中。
print("MAE from Approach 2 (Ordinal Encoding):") 
print(score_dataset(label_X_train, label_X_valid, y_train, y_valid))

MAE from Approach 2 (Ordinal Encoding):
17098.01649543379

7. 统计每个分类(categorical)数据列中唯一条目的数量

# Get number of unique entries in each column with categorical data
object_nunique = list(map(lambda col: X_train[col].nunique(), object_cols))
d = dict(zip(object_cols, object_nunique))# Print number of unique entries by column, in ascending order
sorted(d.items(), key=lambda x: x[1])
  • 创建了一个名为object_nunique的列表,用于存储每个分类数据列中唯一条目的数量。
  • 它使用map函数遍历object_cols中的每一列,并对每一列使用X_train[col].nunique()来计算该列的唯一条目数量。
  • nunique()函数返回该列中不同数值的数量,因此可以用来统计分类数据中的不同类别数量。
  • 创建了一个字典d,将分类数据列的名称作为键,唯一条目数量作为值。这里使用zip函数将列名和唯一条目数量一一对应,然后将其转换为字典。
  • 使用sorted函数将字典中的项按照唯一条目数量升序排列,并以列表的形式返回结果。

在这里插入图片描述

8. 与其对数据集中的所有分类变量进行编码,只为基数(唯一值数量)小于10的列创建独热编码(One-Hot Encoding)

# Columns that will be one-hot encoded
low_cardinality_cols = [col for col in object_cols if X_train[col].nunique() < 10]# Columns that will be dropped from the dataset
high_cardinality_cols = list(set(object_cols)-set(low_cardinality_cols))print('Categorical columns that will be one-hot encoded:', low_cardinality_cols)
print('\nCategorical columns that will be dropped from the dataset:', high_cardinality_cols)
  • 遍历object_cols中的每一列,并使用X_train[col].nunique()来获取每列的唯一值数量,如果唯一值数量小于10,则将该列添加到low_cardinality_cols中。
  • 使用集合操作set(object_cols) - set(low_cardinality_cols)来找出不在low_cardinality_cols中的分类列,然后将这些列的名称存储在high_cardinality_cols中。

Categorical columns that will be one-hot encoded: [‘MSZoning’, ‘Street’, ‘LotShape’, ‘LandContour’, ‘Utilities’, ‘LotConfig’, ‘LandSlope’, ‘Condition1’, ‘Condition2’, ‘BldgType’, ‘HouseStyle’, ‘RoofStyle’, ‘RoofMatl’, ‘ExterQual’, ‘ExterCond’, ‘Foundation’, ‘Heating’, ‘HeatingQC’, ‘CentralAir’, ‘KitchenQual’, ‘Functional’, ‘PavedDrive’, ‘SaleType’, ‘SaleCondition’]

Categorical columns that will be dropped from the dataset: [‘Exterior1st’, ‘Neighborhood’, ‘Exterior2nd’]

9. 执行独热编码(One-Hot Encoding),将低基数(唯一值数量小于10)的分类(categorical)列转换为二进制形式,并将它们与数值特征合并在一起

from sklearn.preprocessing import OneHotEncoderOH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
OH_X_train = pd.DataFrame(OH_encoder.fit_transform(X_train[low_cardinality_cols]))
OH_X_valid = pd.DataFrame(OH_encoder.transform(X_valid[low_cardinality_cols]))# One-hot encoding removed index; put it back
OH_X_train.index = X_train.index
OH_X_valid.index = X_valid.index# Remove categorical columns (will replace with one-hot encoding)
num_X_train = X_train.drop(object_cols, axis=1)
num_X_valid = X_valid.drop(object_cols, axis=1)# Add one-hot encoded columns to numerical features
OH_X_train = pd.concat([num_X_train, OH_X_train], axis=1)
OH_X_valid = pd.concat([num_X_valid, OH_X_valid], axis=1)# Ensure all columns have string type
OH_X_train.columns = OH_X_train.columns.astype(str)
OH_X_valid.columns = OH_X_valid.columns.astype(str)
  • 使用fit_transform方法将独热编码应用到训练数据的low_cardinality_cols列上,并将结果存储在OH_X_train中。接着,使用transform方法将同样的编码器应用到验证数据的low_cardinality_cols列上,并将结果存储在OH_X_valid中。
  • 将独热编码后的数据的索引设置为与原始训练数据和验证数据相同,以确保它们可以正确对齐。
  • 删除了原始数据中的分类列,因为它们已经被独热编码取代。
  • 将独热编码后的数据与原始的数值特征合并在一起,以创建一个包含所有特征的新数据集。
  • 确保新数据集中的所有列都以字符串类型表示,以便与其他列一致。这是因为独热编码会生成以0和1表示的二进制列,需要将其列名转换为字符串类型。这样,数据就准备好用于训练机器学习模型了,其中包括数值特征和独热编码后的分类特征。
print("MAE from Approach 3 (One-Hot Encoding):") 
print(score_dataset(OH_X_train, OH_X_valid, y_train, y_valid))

MAE from Approach 3 (One-Hot Encoding):
17525.345719178084

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/152135.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mysql 8手动终止某个事务并释放其持有的锁

示范数据表 age具有index普通索引 在mysql数据库里的information_schema.INNODB_TRX表中存储有innodb的所有事务&#xff0c;我们可以查看该表来查看正在进行的事务 现在我开启一个事务&#xff0c;执行第1、2行SQL&#xff0c;启动事务并持有id3的行锁 刷新事务表可以看到…

light client轻节点简介

1. 引言 前序博客&#xff1a; Helios——a16z crypto构建的去中心化以太坊轻节点 去中心化和自我主权对于Web3的未来至关重要&#xff0c;但是这些理想并不总适用于每个项目或应用程序。在非托管钱包和bridges等工具中严格优先考虑安全性而不是便利性的用户&#xff0c;可选…

C++ 01.学习C++的意义-狄泰软件学院

一些历史 UNIX操作系统诞生之初是用汇编语言编写的随着UNIX系统的发展&#xff0c;汇编语言的开发效率成为瓶颈&#xff0c;所以需要一个新的语言替代汇编语言1971年通过对B语言改良&#xff0c;使其能直接产生机器代码&#xff0c;C语言诞生UNIX使用C语言重写&#xff0c;同时…

基于Stable Diffusion的图像合成数据集

当前从文本输入生成合成图像的模型不仅能够生成非常逼真的照片&#xff0c;而且还能够处理大量不同的对象。 在论文“评估使用稳定扩散生成的合成图像数据集”中&#xff0c;我们使用“稳定扩散”模型来研究哪些对象和类型表现得如此逼真&#xff0c;以便后续图像分类正确地分配…

[尚硅谷React笔记]——第3章 React应用(基于React脚手架)

目录&#xff1a; react脚手架创建项目并启动react脚手架项目结构一个简单的Hello组件样式的模块化功能界面的组件化编码流程&#xff08;通用&#xff09;组件的组合使用-TodoList 1.react脚手架 xxx脚手架: 用来帮助程序员快速创建一个基于xxx库的模板项目 包含了所有需…

/lib64/libstdc++.so.6: version `GLIBCXX_3.4.21‘ not found (required by

在某项目中遇到下面的错误&#xff0c; ./model2trt_v2: /lib64/libstdc.so.6: version GLIBCXX_3.4.21 not found (required by ./model2trt_v2) ./model2trt_v2: /lib64/libstdc.so.6: version GLIBCXX_3.4.21 not found (required by ../../../lib/linux_lib/libcuda_utils…

WPF中DataContext的绑定技巧

先看效果&#xff1a; 上面的绑定值都是我们自定义的属性&#xff0c;有了以上的提示&#xff0c;那么我们可以轻松绑定字段&#xff0c;再也不用担心错误了。附带源码。 目录 1.建立mvvm项目 2.cs后台使用DataContext绑定 3.xaml前台使用DataContext绑定 4.xaml前台使用Da…

浏览器自动化神器:Automa 轻松实现任务编排 | 开源日报 No.52

usememos/memos Stars: 13.8k License: MIT memos&#xff0c;一个轻量级的、自托管的备忘录中心。开源且永久免费。 开源且永久免费使用 Docker 可以在几秒钟内完成自我托管支持 Markdown 格式可定制和共享提供 RESTful API 用于自助服务 mamoe/mirai Stars: 12.6k Licen…

华为云云耀云服务器L实例评测 | 实例使用教学之高级使用:配置 Git SSH Key 进行自动识别拉代码

华为云云耀云服务器L实例评测 &#xff5c; 实例使用教学之高级使用&#xff1a;配置 Git SSH Key 进行自动识别拉代码 介绍华为云云耀云服务器 华为云云耀云服务器 &#xff08;目前已经全新升级为 华为云云耀云服务器L实例&#xff09; 华为云云耀云服务器是什么华为云云耀云…

Mac解压缩软件BetterZip免费版注册码下载

软件介绍 BetterZip免费版是一款适用于Mac系统的解压缩软件&#xff0c;软件具备了专业、实用、简单等特点&#xff0c;它可以让用户更快捷的向压缩文件中添加和删除文件&#xff0c;同时兼容性也十分优秀&#xff0c;支持ZIP &#xff0c; SIT &#xff0c; TAR、BZIP2 &…

30分钟快速搭建并部署一个免费的个人博客

1前言 现如今网上有许多完善的博客平台&#xff0c;如博客园、掘金、思否、知乎等。有人会说为什么现在网上有这么多成熟的博客平台&#xff0c;你还要浪费时间搭建一个自己的博客系统呢&#xff1f;首先我相信每一个程序员都会想要拥有一个属于自己的博客系统&#xff0c;其次…

微信小程序 table表格 固定表头和首列 右侧表格可以左右滚动

(一) 1.左侧一列固定不动 2.右侧表格内容可以左右滚动 3.单元格内容平均分配 4.每一行行高可以由内容撑开 通过 js 设置左侧一列行高与右侧表格内容行高保持一致 1.1 效果图 1.2 tabble.wxml <view classtable><!-- 左侧固定 --><view classtable_left_colum…

C++对象模型(2)-- 进程内存空间布局

在前面Base类的对象模型中&#xff0c;有base对象实例&#xff0c;虚函数表&#xff0c;静态变量和函数等&#xff0c;这些信息在内存中都有各自的保存位置。了解进程的内存空间布局&#xff0c;比如内存空间分成几大块&#xff0c;各种不同的数据分别保存在内存空间的哪个位置…

MyBatisPlus(十一)包含查询:in

说明 包含查询&#xff0c;对应SQL语句中的 in 语句&#xff0c;查询参数包含在入参列表之内的数据。 in Testvoid inNonEmptyList() {// 非空列表&#xff0c;作为参数List<Integer> ages Stream.of(18, 20, 22).collect(Collectors.toList());in(ages);}Testvoid in…

JavaEE初阶学习:HTTP协议和Tomcat

1. HTTP协议 HTTP协议是一个非常广泛的应用层协议~~ 应用层协议 —> TCP IP 协议栈 应用层 —> 关注数据怎么使用~ 传输层 —> 关注的是整个传输的起点和终点 网络层 —> 地址管理 路由选择 数据链路层 —> 相邻节点之间的数据转发 物理层 —> 基础设置,硬…

Jmeter常用参数化技巧总结!

说起接口测试&#xff0c;相信大家在工作中用的最多的还是Jmeter。 JMeter是一个100&#xff05;的纯Java桌面应用&#xff0c;由Apache组织的开放源代码项目&#xff0c;它是功能和性能测试的工具。具有高可扩展性、支持Web(HTTP/HTTPS)、SOAP、FTP、JAVA 等多种协议。 在做…

(六)正点原子STM32MP135移植——内核移植

目录 一、概述 二、编译官方代码 三、移植 四、编译 一、概述 前面已经移植好了TF-A、optee、u-boot&#xff0c;在u-boot能正常跑起来的情况下&#xff0c;现在来移植内核。 二、编译官方代码 进入kernel目录 2.1 解压源码、打补丁 /* 解压源码 */ tar xf linux-6.1.28.…

【网络安全 ---- 靶场搭建】凡诺企业网站管理系统靶场详细搭建过程(asp网站,练习sql注入)

一&#xff0c;资源下载 百度网盘资源下载链接&#xff1a;百度网盘 请输入提取码百度网盘为您提供文件的网络备份、同步和分享服务。空间大、速度快、安全稳固&#xff0c;支持教育网加速&#xff0c;支持手机端。注册使用百度网盘即可享受免费存储空间https://pan.baidu.com…

jira+confluence安装

准备如下所有包&#xff1a; atlassian-agent.jar jdk-8u241-linux-x64.tar.gz atlassian-confluence-8.0.0-x64.bin atlassian-jira-software-9.4.0-x64.bin mysql-8.0.31-1.el8.x86_64.rpm-bundle.tar mysql-connector-java-8.0.28.jar confluence-8.2.1破解 1.安装j…

wpf webBrowser控件 常用的函数和内存泄漏问题

介绍 WebBrowsers可以让我们在窗体中进行导航网页。 WebBrowser控件内部使用ie的引擎&#xff0c;因此使用WebBrowser我们必须安装ie浏览器&#xff08;windows默认安装的&#xff09;。 使用 直接在xmal中使用webBrowser控件 <WebBrowser x:Name"WebBrowser1"…