【C++】List -- 详解

一、list的介绍及使用

https://cplusplus.com/reference/list/list/?kw=list

  1. list 是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代
  2. list 的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
  3. list forward_list 非常相似:最主要的不同在于 forward_list 是单链表,只能朝前迭代,不支持尾插、尾删,对比双向链表的唯一优势就是每个节点少存一个指针。
  4. 与其他的序列式容器相比(array,vector,deque),list 通常在任意位置进行插入、移除元素的执行效率更好。
  5. 与其他序列式容器相比,list 和 forward_list 最大的缺陷是不支持任意位置的随机访问,比如:要访问 list 的第 6 个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list 还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大 list 来说这可能是一个重要的因素)。


1、list的使用

list 中的接口比较多,此处类似,只需要掌握如何正确的使用,然后再去深入研究背后的原理,已达到可扩展的能力。以下为list中一些常见的重要接口。

(1)list的构造

// list的构造
void TestList1()
{list<int> l1;                        // 构造空的l1list<int> l2(4, 100);                // l2中放4个值为100的元素list<int> l3(l2.begin(), l2.end());  // 用l2的[begin(), end())左闭右开的区间构造l3list<int> l4(l3);                    // 用l3拷贝构造l4// 以数组为迭代器区间构造l5int array[] = {16, 2, 77, 29};list<int> l5(array, array + sizeof(array) / sizeof(int));// 列表格式初始化C++11list<int> l6{1, 2, 3, 4, 5};// 用迭代器方式打印l5中的元素list<int>::iterator it = l5.begin();while (it != l5.end()){cout << *it << " ";++it;}cout << endl;// C++11范围for的方式遍历for (auto& e : l5){cout << e << " ";}cout << endl;
}

(2)list iterator的使用

可以暂时将迭代器理解成一个指针,该指针指向 list 中的某个节点

// list迭代器的使用
void PrintList(const list<int>& l)
{// 注意这里调用的是list的 begin() const,返回list的const_iterator对象for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it){cout << *it << " ";// *it = 10; // 不能改变该值 -- 编译不通过}cout << endl;
}
void TestList2()
{int array[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};list<int> l(array, array + sizeof(array) / sizeof(array[0]));// 使用正向迭代器正向list中的元素// list<int>::iterator it = l.begin(); // C++98中语法auto it = l.begin();                   // C++11之后推荐写法while (it != l.end()){cout << *it << " ";++it;}cout << endl;// 使用反向迭代器逆向打印list中的元素// list<int>::reverse_iterator rit = l.rbegin();auto rit = l.rbegin();while (rit != l.rend()){cout << *rit << " ";++rit;}cout << endl;
}

注意遍历链表只能用迭代器范围for

【注意】
  1. begin 与 end 为正向迭代器,对迭代器执行++操作,迭代器移动
  2. rbegin(end) 与 rend(begin) 为反向迭代器,对迭代器执行++操作,迭代器移动

(3)list capacity


(4)list element access


(5)list modifiers

// list插入和删除
// push_back/pop_back/push_front/pop_front
void TestList3()
{int array[] = {1, 2, 3};list<int> L(array, array + sizeof(array) / sizeof(array[0]));L.push_back(4); // 在list的尾部插入4L.push_front(0); // 在list的头部插入0PrintList(L);L.pop_back(); // 删除list尾部节点L.pop_front(); // 删除list头部节点PrintList(L);
}
// insert /erase 
void TestList4()
{int array1[] = {1, 2, 3};list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));auto pos = ++L.begin(); // 获取链表中第二个节点cout << *pos << endl;L.insert(pos, 4); // 在pos前插入值为4的元素PrintList(L);L.insert(pos, 5, 5); // 在pos前插入5个值为5的元素PrintList(L);vector<int> v{7, 8, 9};L.insert(pos, v.begin(), v.end()); // 在pos前插入[v.begin(), v.end)区间中的元素PrintList(L);L.erase(pos); // 删除pos位置上的元素PrintList(L);L.erase(L.begin(), L.end()); // 删除list中[begin, end)区间中的元素,即删除list中的所有元素PrintList(L);
}
// resize/swap/clear
void TestList5()
{// 用数组来构造listint array1[] = {1, 2, 3};list<int> l1(array1, array1 + sizeof(array1) / sizeof(array1[0]));PrintList(l1);list<int> l2;l1.swap(l2); // 交换l1和l2中的元素PrintList(l1);PrintList(l2);l2.clear(); // 将l2中的元素清空cout << l2.size() << endl;
}
为什么 C++98 建议使用各自容器里的 swap,而不建议使用算法里的 swap?

可以看到算法里 swap 的 C++98 的实现,无论是 string、vector、list 使用它会涉及深拷贝问题,而且这里的深拷贝代价极大,需要深拷贝 3 次 —— 当 l1 和 l2 交换,这里会把 l1 拷贝构造一份 c,然后把 l2 赋值于 l1,c 赋值于 l2,完成交换。

而如果是容器里的 swap,需要交换 l1 和 l2,只需要头指针交换即可。假设是 vector,只要把 l1 和 l2 对应的 _start、_finish、_endofstorage 交换即可。相比算法里的 C++98 里的 swap,这里可以认为没有任何代价。


(6)list的迭代器失效 
先将迭代器暂时理解成类似于指针, 迭代器失效即迭代器所指向的节点无效,即该节点被删除了 。因为 list 的底层结构为带头结点的双向循环链表,因此在 list 中进行 插入 时是 不会 导致 list 的迭代器失效的,只有在 删除 时才 失效,并且 失效的只是指向被删除节点的迭代器 ,其他迭代器不会受到影响
void TestListIterator1()
{int array[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};list<int> l(array, array+sizeof(array)/sizeof(array[0]));auto it = l.begin();while (it != l.end()){// erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋值l.erase(it); ++it;}
}// 改正
void TestListIterator()
{int array[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};list<int> l(array, array+sizeof(array)/sizeof(array[0]));auto it = l.begin();while (it != l.end()){l.erase(it++); // it = l.erase(it);}
}


⚪【补充】

容器迭代器的分类:

  1. 使用功能的角度可分为,(正向、反向) + const
  2. 容器底层结构的角度可分为,单向、双向、随机

比如单链表迭代器、哈希表迭代器就是单向,特征是能 ++,不能 --;双向链表迭代器、map 迭代器就是双向,特征是能 ++、–;string、vector、deque 迭代器就是随机迭代器,特征是能 ++、–、+、-,一般随机迭代器底层都是一个连续的空间。


二、list的模拟实现

1、模拟实现list

要模拟实现 list,必须要熟悉 list 的底层结构以及其接口的含义。
#pragma once#include <iostream>
using namespace std;
#include <assert.h>namespace xyl
{// List的节点类template<class T>struct ListNode{ListNode(const T& val = T()): _prev(nullptr), _next(nullptr), _val(val){}ListNode<T>* _prev;ListNode<T>* _next;T _val;};template<class T, class Ref, class Ptr>class ListIterator{typedef ListNode<T> Node;typedef ListIterator<T, Ref, Ptr> Self;// Ref 和 Ptr 类型需要重定义下,实现反向迭代器的时候需要用到public:typedef Ref Ref;typedef Ptr Ptr;public:// 构造ListIterator(Node* node = nullptr): _node(node){}// 具有指针类似行为Ref operator*(){return _node->_val;}Ptr operator->(){return &(operator*());}// 迭代器支持移动Self& operator++(){_node = _node->_next;return *this;}Self operator++(int){Self temp(*this);_node = _node->_next;return temp;}Self& operator--(){_node = _node->_prev;return *this;}Self operator--(int){Self temp(*this);_node = _node->_prev;return temp;}// 迭代器支持比较bool operator!=(const Self& l)const{return _node != l._node;}bool operator==(const Self& l)const{return _node != l._node;}Node* _node;};template<class Iterator>class ReverseListIterator{// 注意:这里typename的作用是明确告诉编译器,Ref是Iterator类中的一个类型,而不是静态成员变量// 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量// 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的public:typedef typename Iterator::Ref Ref;typedef typename Iterator::Ptr Ptr;typedef ReverseListIterator<Iterator> Self;public:// 构造ReverseListIterator(Iterator it): _it(it){}// 具有指针类似行为Ref operator*(){Iterator temp(_it);--temp;return *temp;}Ptr operator->(){return &(operator*());}// 迭代器支持移动Self& operator++(){--_it;return *this;}Self operator++(int){Self temp(*this);--_it;return temp;}Self& operator--(){++_it;return *this;}Self operator--(int){Self temp(*this);++_it;return temp;}// 迭代器支持比较bool operator!=(const Self& l)const{return _it != l._it;}bool operator==(const Self& l)const{return _it != l._it;}Iterator _it;};template<class T>class list{typedef ListNode<T> Node;public:// 正向迭代器typedef ListIterator<T, T&, T*> iterator;typedef ListIterator<T, const T&, const T&> const_iterator;// 反向迭代器typedef ReverseListIterator<iterator> reverse_iterator;typedef ReverseListIterator<const_iterator> const_reverse_iterator;public:// List的构造list(){CreateHead();}list(int n, const T& value = T()){CreateHead();for (int i = 0; i < n; ++i)push_back(value);}template <class Iterator>list(Iterator first, Iterator last){CreateHead();while (first != last){push_back(*first);++first;}}list(const list<T>& l){CreateHead();// 用l中的元素构造临时的temp,然后与当前对象交换list<T> temp(l.begin(), l.end());this->swap(temp);}list<T>& operator=(list<T> l){this->swap(l);return *this;}~list(){clear();delete _head;_head = nullptr;}// List的迭代器iterator begin(){return iterator(_head->_next);}iterator end(){return iterator(_head);}const_iterator begin()const{return const_iterator(_head->_next);}const_iterator end()const{return const_iterator(_head);}reverse_iterator rbegin(){return reverse_iterator(end());}reverse_iterator rend(){return reverse_iterator(begin());}const_reverse_iterator rbegin()const{return const_reverse_iterator(end());}const_reverse_iterator rend()const{return const_reverse_iterator(begin());}// List的容量相关size_t size()const{Node* cur = _head->_next;size_t count = 0;while (cur != _head){count++;cur = cur->_next;}return count;}bool empty()const{return _head->_next == _head;}void resize(size_t newsize, const T& data = T()){size_t oldsize = size();if (newsize <= oldsize){// 有效元素个数减少到newsizewhile (newsize < oldsize){pop_back();oldsize--;}}else{while (oldsize < newsize){push_back(data);oldsize++;}}}// List的元素访问操作// 注意:List不支持operator[]T& front(){return _head->_next->_val;}const T& front()const{return _head->_next->_val;}T& back(){return _head->_prev->_val;}const T& back()const{return _head->_prev->_val;}// List的插入void push_back(const T& val){insert(end(), val);}// List的删除void pop_back(){erase(--end());}void push_front(const T& val){insert(begin(), val);}void pop_front(){erase(begin());}// 在pos位置前插入值为val的节点iterator insert(iterator pos, const T& val){Node* pNewNode = new Node(val);Node* pCur = pos._node;// 先将新节点插入pNewNode->_prev = pCur->_prev;pNewNode->_next = pCur;pNewNode->_prev->_next = pNewNode;pCur->_prev = pNewNode;return iterator(pNewNode);}// 删除pos位置的节点,返回该节点的下一个位置iterator erase(iterator pos){// 找到待删除的节点Node* pDel = pos._node;Node* pRet = pDel->_next;// 将该节点从链表中拆下来并删除pDel->_prev->_next = pDel->_next;pDel->_next->_prev = pDel->_prev;delete pDel;return iterator(pRet);}void clear(){Node* cur = _head->_next;// 采用头删除删除while (cur != _head){_head->_next = cur->_next;delete cur;cur = _head->_next;}_head->_next = _head->_prev = _head;}void swap(bite::list<T>& l){std::swap(_head, l._head);}private:void CreateHead(){_head = new Node;_head->_prev = _head;_head->_next = _head;}private:Node* _head;};
}// 对模拟实现的list进行测试
// 正向打印链表
template<class T>
void PrintList(const xyl::list<T>& l)
{auto it = l.begin();while (it != l.end()){cout << *it << " ";++it;}cout << endl;
}// 测试List的构造
void TestBiteList1()
{xyl::list<int> l1;xyl::list<int> l2(10, 5);PrintList(l2);int array[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};xyl::list<int> l3(array, array + sizeof(array) / sizeof(array[0]));PrintList(l3);xyl::list<int> l4(l3);PrintList(l4);l1 = l4;PrintList(l1);
}// PushBack()/PopBack()/PushFront()/PopFront()
void TestBiteList2()
{// 测试PushBackxyl::list<int> l;l.push_back(1);l.push_back(2);l.push_back(3);PrintList(l);// 测试PopBackl.pop_back();l.pop_back();PrintList(l);l.pop_back();cout << l.size() << endl;// 测试PushFrontl.push_front(1);l.push_front(2);l.push_front(3);PrintList(l);// 测试PopFrontl.pop_front();l.pop_front();PrintList(l);l.pop_front();cout << l.size() << endl;
}// 测试insert和erase
void TestBiteList3()
{int array[] = {1, 2, 3, 4, 5};xyl::list<int> l(array, array + sizeof(array) / sizeof(array[0]));auto pos = l.begin();l.insert(l.begin(), 0);PrintList(l);++pos;l.insert(pos, 2);PrintList(l);l.erase(l.begin());l.erase(pos);PrintList(l);// pos指向的节点已经被删除,pos迭代器失效cout << *pos << endl;auto it = l.begin();while (it != l.end()){it = l.erase(it);}cout << l.size() << endl;
}// 测试反向迭代器
void TestBiteList4()
{int array[] = {1, 2, 3, 4, 5};xyl::list<int> l(array, array + sizeof(array) / sizeof(array[0]));auto rit = l.rbegin();while (rit != l.rend()){cout << *rit << " ";++rit;}cout << endl;const xyl::list<int> cl(l);auto crit = l.rbegin();while (crit != l.rend()){cout << *crit << " ";++crit;}cout << endl;
}

【List 的迭代器】
迭代器有两种实现方式,具体应根据容器底层数据结构实现:

  1. 原生态指针比如:vector。
  2. 将原生态指针进行封装,因迭代器使用形式与指针完全相同。

因此在自定义的类中必须实现以下方法:

  1. 指针可以解引用,迭代器的类中必须重载 operator*()
  2. 指针可以通过 -> 访问其所指空间成员,迭代器类中必须重载 oprator->()
  3. 指针可以 ++ 向后移动,迭代器类中必须重载 operator++() 与 operator++(int)
  4. 至于operator--() / operator--(int) 释放需要重载,根据具体的结构来抉择,双向链表可以向前移动,所以需要重载,如果是 forward_list 就不需要重载 -- 。
  5. 迭代器需要进行是否相等的比较,因此还需要重载 operator==() 与 operator!=()

2、list的反向迭代器 

通过前面我们可以知道,反向迭代器的 ++ 就是正向迭代器的 --,反向迭代器的 -- 就是正向迭代器的 ++,因此反向迭代器的实现可以借助正向迭代器,即: 反向迭代器内部可以包含一个正向迭代器,对正向迭代器的接口进行包装即可。
template<class Iterator>
class ReverseListIterator
{// 注意:这里typename的作用是明确告诉编译器,Ref是Iterator类中的一个类型,而不是静态成员变量// 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量// 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的
public:typedef typename Iterator::Ref Ref;typedef typename Iterator::Ptr Ptr;typedef ReverseListIterator<Iterator> Self;
public:// 构造ReverseListIterator(Iterator it): _it(it){}// 具有指针类似行为Ref operator*(){Iterator temp(_it);--temp;return *temp;}Ptr operator->(){return &(operator*());}// 迭代器支持移动Self& operator++(){--_it;return *this;}Self operator++(int){Self temp(*this);--_it;return temp;}Self& operator--(){++_it;return *this;}Self operator--(int){Self temp(*this);++_it;return temp;}// 迭代器支持比较bool operator!=(const Self& l)const{return _it != l._it;}bool operator==(const Self& l)const{return _it != l._it;}Iterator _it;
};

三、listvector的对比

vector list 都是 STL 中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不同,其主要不同如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/153827.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springcloud笔记(2)-Eureka服务注册

Eureka服务注册 服务注册&#xff0c;发现。 在Spring Cloud框架中&#xff0c;Eureka的核心作用是服务的注册和发现&#xff0c;并实现服务治理。 Eureka包含两个组件&#xff1a;Eureka Server和Eureka Client。 Eureka Server提供服务注册服务&#xff0c;各个节点启动后…

函数reshape(-1,)里的-1的意思

reshape函数是对narray的数据结构进行维度变换&#xff0c;由于变换遵循对象元素个数不变&#xff0c;在进行变换时&#xff0c;假设一个数据对象narray的总元素个数为N&#xff0c;如果我们给出一个维度为&#xff08;m&#xff0c;-1&#xff09;时&#xff0c;我们就理解为将…

聊聊分布式架构05——[NIO基础]BIO到NIO的演进

目录 I/O I/O模型 BIO示例 BIO与NIO比较 NIO的三大核心 NIO核心之缓冲区 Buffer常用子类&#xff1a; Buffer常用API Buffer中的重要概念 NIO核心之通道 FileChannel 类 FileChannel常用方法 NIO核心之选择器 概述 应用 NIO非阻塞原理分析 服务端流程 客户端…

【【萌新的SOC学习之重新起航SOC】】

萌新的SOC学习之重新起航SOC ZYNQ PL 部分等价于 Xilinx 7 系列 FPGA PS端&#xff1a;Zynq 实际上是一个以处理器为核心的系统&#xff0c;PL 部分可以看作是它的一个外设。 我们可以通过使用AXI(Advanced eXtensible Interface)接口的方式调用 IP 核&#xff0c;系统通过 AX…

MAX30102心率血氧传感器

MAX30102心率血氧传感器介绍 背景基本功能基本结构基本原理采集方法直通式采集方法反射式采集方法 血氧采集原理Beer-Lambert 定理皮肤组织模型血氧测量过程AC / DC 的计算 心率采集原理 实验结果代码走读资源链接 背景 目前&#xff0c;基本上所有的可穿戴式设备都集成了心率…

4.02 用户中心-上传头像功能开发

详细内容请看下面地址&#xff1a; 地址&#xff1a;http://www.gxcode.top/code

华为云云耀云服务器L实例评测|测试CentOS的网络配置和访问控制

目录 引言 1 理解几个基础概念 2 配置VPC、子网以及路由表 3 配置安全组策略和访问控制规则 3.1 安全组策略和访问控制简介 3.2 配置安全组策略 3.3 安全组的最佳实践 结论 引言 在云计算时代&#xff0c;网络配置和访问控制是确保您的CentOS虚拟机在云环境中安全运行的…

【JavaScript】浅拷贝与深拷贝

引言 浅拷贝、深拷贝是对引用类型而言的。 引用类型的变量对应一个栈区地址&#xff0c;这个栈区地址处存储的值是存放的真正的数据的堆区地址。 基本数据类型的变量也对应一个栈区地址&#xff0c;但是该地址存储的是其真正的值。 let a b发生了什么&#xff1f; let obj…

docker compose的安装和使用

docker-copose 介绍 docker-compose 是一个容器编排工具&#xff08;自动化部署、管理&#xff09;; 它用来在单台 Linux 服务器上运行多个 Docker 容器; docker-compose 使用YAML文件来配置所有需要运行的 Docker 容器&#xff0c;该 YAML 文件的默认名称为 docker-compose.…

pytorch算力与有效性分析

pytorch Windows中安装深度学习环境参考文档机器环境说明3080机器 Windows11qt_env 满足遥感CS软件分割、目标检测、变化检测的需要gtrs 主要是为了满足遥感监测管理平台&#xff08;BS&#xff09;系统使用的&#xff0c;无深度学习环境内容swin_env 与 qt_env 基本一致od 用于…

PHP 个人愿望众筹网站系统mysql数据库web结构apache计算机软件工程网页wamp

一、源码特点 PHP 个人愿望众筹网站系统是一套完善的web设计系统&#xff0c;对理解php编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 php 个人愿望众筹网站 代码 https://download.csdn.net/download/qq_41221322/8…

架构师选择题--信息安全技术(系统安全)

架构师选择题--信息安全技术 真题 很少超纲 真题 b c d d b a d a d a Kergberos和数字证书是类似的协议 向TGS申请票据 C PGP&#xff1a;安全电子邮件传输协议 b c b 使用发送方是私钥加密摘要–发送方不可抵赖 加密&#xff1a;保密性 信息摘要&#xff1a;完整性 数…

uCOSIII实时操作系统 四 任务管理

目录 uCOSIII启动过程&#xff1a; stm32的启动过程&#xff1a; uCOSIII的启动过程&#xff1a; 任务状态&#xff1a; 任务控制块&#xff1a; 任务堆栈&#xff1a; 任务就绪表&#xff1a; 优先级位映射表//OSPrioTbl[] 位映射表&#xff1a; 查找优先级&#xf…

java 环境配置(详细教程)

文章目录 前言一、jdk 下载二、windows1、jdk 安装2、环境变量的配置2.1 Java_Home 配置2.2 Path 配置2.3 CLASSPATH 配置 3、检测是否配置成功 前言 java 环境配置&#xff0c;网上教程很多&#xff0c;那我为什么还要写&#xff1f; 首先为了完善我的知识体系今后一些软件的…

【大数据】Spark入门指南:从基础概念到实践应用全解析

原创不易&#xff0c;注重版权。转载请注明原作者和原文链接 文章目录 Spark是什么Spark组件Spark的优势Word Count Spark基本概念ApplicationDriverMaster & WorkerExecutorRDDJobTaskStageShuffleStage的划分窄依赖 & 宽依赖 DAG Spark执行流程Spark运行模式RDD详解R…

Transformer为什么如此有效 | 通用建模能力,并行

目录 1 更强更通用的建模能力 2 并行计算 3 大规模训练数据 4 多训练技巧的集成 Transformer是一种基于自注意力机制的网络&#xff0c;在最近一两年年可谓是大放异彩&#xff0c;我23年入坑CV的时候&#xff0c;我看到的CV工作似乎还没有一个不用到Transformer里的一些组…

存档&改造【04】二维码操作入口设置细节自动刷新设置后的交互式网格内容的隐藏

因为数据库中没有数据无法查看设置效果&#xff0c;于是自己创建了个测试数据表&#xff0c;用来给demo测试 -- 二维码操作入口设置 create table JM_QR_CODE(QR_CODE_ID NUMBER generated as identity primary key,SYSTEM_ID NUMBER(20) not null,IS_ENAB…

PostgreSQL安装错误:Problem running post-install step

问题描述 安装包&#xff1a;pgpostgresql-14.9-1-windows-x64 postgresql-16.0-1-windows-x64 采取措施 一、 首先安装的是16版本的程序&#xff0c;报错后卸载尝试安装14版本软件&#xff0c;依旧报错。 二、 网上搜索&#xff0c;发现该博客&#xff1a; PostgreSQL安…

嵌入式Linux裸机开发(五)中断管理

系列文章目录 文章目录 系列文章目录前言STM32 中断系统IMX6U中断控制8个中断GIC中断控制器GIC介绍中断IDGIC逻辑分块GIC协处理器 中断使能中断优先级 重点代码分析官方SDK函数start.S文件自行编写中断驱动文件 前言 最近在学习中发现&#xff0c;学Linux嵌入式不仅是对Linux的…