python+opencv+深度学习实现二维码识别 计算机竞赛

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 python+opencv+深度学习实现二维码识别

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 二维码基础概念

2.1 二维码介绍

二维条码/二维码(2-dimensional bar
code)是用某种特定的几何图形按一定规律在平面(二维方向上)分布的、黑白相间的、记录数据符号信息的图形;在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理:它具有条码技术的一些共性:每种码制有其特定的字符集;每个字符占有一定的宽度;具有一定的校验功能等。同时还具有对不同行的信息自动识别功能、及处理图形旋转变化点。

2.2 QRCode

常见的二维码为QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,它比传统的Bar
Code条形码能存更多的信息,也能表示更多的数据类型。

2.3 QRCode 特点

1、符号规格从版本1(21×21模块)到版本40(177×177 模块),每提高一个版本,每边增加4个模块。

2、数据类型与容量(参照最大规格符号版本40-L级):

  • 数字数据:7,089个字符
  • 字母数据: 4,296个字符
  • 8位字节数据: 2,953个字符
  • 汉字数据:1,817个字符

3、数据表示方法:

  • 深色模块表示二进制"1",浅色模块表示二进制"0"。

4、纠错能力:

  • L级:约可纠错7%的数据码字
  • M级:约可纠错15%的数据码字
  • Q级:约可纠错25%的数据码字
  • H级:约可纠错30%的数据码字

5、结构链接(可选)

  • 可用1-16个QR Code码符号表示一组信息。每一符号表示100个字符的信息。

3 机器视觉二维码识别技术

3.1 二维码的识别流程

在这里插入图片描述

首先, 对采集的彩色图像进行灰度化, 以提高后继的运行速度。

其次, 去除噪声。 采用十字形中值滤波去除噪音对二码图像的干扰主要是盐粒噪声。

利用灰度直方图工具, 使用迭代法选取适当的阈值, 对二维码进行二值化处理,灰度化 去噪 二值化 寻找探测图形确定旋转角度 定位 旋转
获得数据使其变为白底黑色条码。

最后, 确定二维码的位置探测图形, 对条码进行定位, 旋转至水平后, 获得条码数据,
以便下一步进行解码。

3.2 二维码定位

QR 码有三个形状相同的位置探测图形, 在没有旋转的情况下, 这三个位置探测图形分别位于 QR 码符号的左上角、 右上角和左下角。
三个位置探测图形共同组成图像图形。

在这里插入图片描述

每个位置探测图形可以看作是由 3 个重叠的同心的正方形组成, 它们分别为 7 7 个深色模块、 5 5 个浅模块和 3*3 个深色模块。
位置探测图形的模块宽度比为 1: 1:3: 1: 1。

在这里插入图片描述

这种 1: 1: 3: 1: 1 的宽度比例特征在图像的其他位置出现的可能性很小, 故可以将此作为位置探测图形的扫描特征。 基于此特征,
当一条直线上(称为扫描线) 被黑白相间地截为1: 1: 3:1: 1 时, 可以认为该直线穿过了位置探测图形。

另外, 该扫描特征不受图像倾斜的影响。 对比中的两个 QR 码符号可以发现, 无论 QR码符号是否倾斜, 都符合 1: 1: 3:1: 1 的扫描特征。

在这里插入图片描述

3.3 常用的扫描方法

  1. 在 X 方向进行依次扫描。

(1) 固定 Y 坐标的取值, 在 X 方向上画一条水平直线(称为扫描线) 进行扫描。 当扫描线被黑白相间地截为 1: 1: 3: 1: 1 时,
可以认为该直线穿过了位置探测图形。 在实际判定时, 比例系数允许 0. 5 的误差, 即比例系数为1 的, 允许范围为 0. 5~1. 5, 比例系数为 3
的, 允许范围为 2. 5~3. 5。

(2) 当寻找到有直线穿过位置探测图形时, 记录下位置探测图形的外边缘相遇的第一点和最后一点 A 和 B。 由 A、 B
两点为端点的线段称为扫描线段。将扫描线段保存下来。

在这里插入图片描述

用相同的方法, 完成图像中所有水平方向的扫描。

  1. 在 Y 方向, 使用相同的方法, 进行垂直扫描, 同样保存扫描得到的扫描线段。

扫描线段分类扫描步骤获得的扫描线段是没有经过分类的, 也就是对于特定的一条扫描线段, 无法获知其具体对应于三个位置探测图形中的哪一个。
在计算位置探测图形中心坐标之前, 要将所有的扫描线段按照位置进行归类。 一般采用距离邻域法进行扫描线段的分类。

距离邻域法的思想是: 给定一个距离阈值 dT, 当两条扫描线段的中点的距离小于 d T 时, 认为两条扫描线段在同一个邻域内, 将它们分为一类,
反之则归为不同的类别。

距离邻域法的具体步骤如下:
(1) 给定一个距离阈值 dT , d T要求满足以下条件: 位于同一个位置探测图形之中的任意两点之间的距离小于 dT ,
位于不同位置探测图形中的任意两点之间的距离大于 d T
(2) 新建一个类别, 将第 1 条扫描线段归入其中。
(3) 对于第 i 条扫描线段 l i (2≤i≤n), 做以下操作:

a) 求出 l i 的中点 C i 。

b) 分别计算C i与在已存在的每一个类别中的第一条扫描线段的中点的距离d,若 d<d T , 则直接将 l i 加入相应类别中。

c) 若无法找到 l i 可以加入的类别, 则新建一个类别, 将 l i 加入其中。

(4) 将所有类别按照包含扫描线段的数目进行从大到小排序, 保存前 3 个类别(即
包含扫描线段数目最多的 3 个类别), 其余的视为误判得到的扫描线段(在位置探测图形以外的位置得到的符合扫描特征的扫描线段),
直接舍去。距离邻域法结束后得到的分好 3 个类别的扫描线段就分别对应了 3 个位置探测图形。距离邻域法的关键就是距离阈值的选取。 一般对于不同大小的 QR
码图像, 要使用不同的距离阈值。

(1) 在 X 方向的扫描线段中找出最外侧的两条, 分别取中点, 记为 A、 B。 由 A、 B两点连一条直线。
在这里插入图片描述

(2) 在 Y 方向的扫描线段中找出最外侧的两条, 分别取中点, 记为 C、 D。 由 C、 D两点连一条直线。
在这里插入图片描述

(3) 计算直线 AB 与直线 CD 的交点 O, 即为位置探测图形中心点。

在这里插入图片描述

将 QR 码符号的左上、 右上位置探测图形的中心分别记为 A、 B。 连接 A、 B。 直线 AB 与水平线的夹角α 即为 QR 码符号的旋转角度。

在这里插入图片描述
对于该旋转角度α , 求出其正弦值 sinα 与余弦值 cosα 即可。 具体计算公式如下:
在这里插入图片描述

在这里插入图片描述

位置探测图形边长的计算是基于无旋转图像的, 在无旋转图像中, 水平扫描线段的长度即为位置探测图形的边长。

水平扫描线段 AB 的长度即为位置探测图形的边长 X。

在这里插入图片描述

对于经过旋转的 QR 码图像, 先通过插值算法生成旋正的 QR 码图像, 然后按照如上所述的方法进

4 深度学习二维码识别

基于 CNN 的二维码检测,网络结构如下

在这里插入图片描述

4.1 部分关键代码

篇幅有限,学长在这只给出部分关键代码

首先,定义一个 AlgoQrCode.h

    #pragma once#include #include 
​    using namespace cv;
​    using namespace std;class AlgoQRCode{private:Ptr<wechat_qrcode::WeChatQRCode> detector;public:bool initModel(string modelPath);string detectQRCode(string strPath);bool compression(string inputFileName, string outputFileName, int quality);void release();};

该头文件定义了一些方法,包含了加载模型、识别二维码、释放资源等方法,以及一个 detector 对象用于识别二维码。

然后编写对应的源文件 AlgoQrCode.cpp

bool AlgoQRCode::initModel(string modelPath) {
​    	string detect_prototxt = modelPath + "detect.prototxt";
​    	string detect_caffe_model = modelPath + "detect.caffemodel";
​    	string sr_prototxt = modelPath + "sr.prototxt";
​    	string sr_caffe_model = modelPath + "sr.caffemodel";try{
​    		detector = makePtr<wechat_qrcode::WeChatQRCode>(detect_prototxt, detect_caffe_model, sr_prototxt, sr_caffe_model);}
​    	catch (const std::exception& e){
​    		cout << e.what() << endl;return false;}return true;}string AlgoQRCode::detectQRCode(string strPath){if (detector == NULL) {return "-1";}vector<Mat> vPoints;vector<cv::String> vStrDecoded;Mat imgInput = imread(strPath, IMREAD_GRAYSCALE);//	vStrDecoded = detector->detectAndDecode(imgInput, vPoints);....}bool AlgoQRCode::compression(string inputFileName, string outputFileName, int quality) {Mat srcImage = imread(inputFileName);if (srcImage.data != NULL){vector<int>compression_params;compression_params.push_back(IMWRITE_JPEG_QUALITY);compression_params.push_back(quality);     //图像压缩参数,该参数取值范围为0-100,数值越高,图像质量越高bool bRet = imwrite(outputFileName, srcImage, compression_params);return bRet;}return false;}void AlgoQRCode::release() {detector = NULL;}

5 测试结果

学长这里放到树莓派中,调用外部摄像头进行识别,可以看到,效果还是非常不错的

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/156934.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python高效实现网站数据挖掘

在当今互联网时代&#xff0c;SEO对于网站的成功至关重要。而Python爬虫作为一种强大的工具&#xff0c;为网站SEO带来了革命性的改变。通过利用Python爬虫&#xff0c;我们可以高效地实现网站数据挖掘和关键词分析&#xff0c;从而优化网站的SEO策略。本文将为您详细介绍如何利…

竞赛选题 深度学习 机器视觉 车位识别车道线检测 - python opencv

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满分5分) …

KubeVela跨地域的多集群管理方案

随着公司全球化战略的布局,业务呈点状分布在亚太、美东、欧洲等多个地域,云原生kubevela在跨地域多集群管控方面也遇到网络上的互通问题。 在公司网络规划上只允许一个区域的一个VPC跟另一个区域的一个VPC打通,同区域不同机房的网络都可以打通的网络架构基础上,由于一个区…

生产级Stable Diffusion AI服务部署指南【BentoML】

在本文中&#xff0c;我们将完成 BentoML 和 Diffusers 库之间的集成过程。 通过使用 Stable Diffusion 2.0 作为案例研究&#xff0c;你可以了解如何构建和部署生产就绪的 Stable Diffusion 服务。 推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 Stable Diffusion 2.0 …

睿趣科技:未来抖音开网店还有前景吗

随着科技的快速发展&#xff0c;电商平台已经成为了人们生活中不可或缺的一部分。在中国&#xff0c;抖音作为一个短视频平台&#xff0c;近年来迅速崛起&#xff0c;吸引了大量的用户和商家。那么&#xff0c;在未来&#xff0c;抖音是否还能为商家提供一个有效的电商平台呢?…

logicFlow 流程图编辑工具使用及开源地址

一、工具介绍 LogicFlow 是一款流程图编辑框架&#xff0c;提供了一系列流程图交互、编辑所必需的功能和灵活的节点自定义、插件等拓展机制。LogicFlow 支持前端研发自定义开发各种逻辑编排场景&#xff0c;如流程图、ER 图、BPMN 流程等。在工作审批配置、机器人逻辑编排、无…

VScode Invoke-Expression: 无法将参数绑定到参数“Command”,因为该参数为空字符串

打开vscode时发生错误&#xff1a;Invoke-Expression : 无法将参数绑定到参数“Command”&#xff0c;因为该参数为空字符串。 解决办法&#xff1a;在anaconda prompt base中输入&#xff1a; conda upgrade -n base -c defaults --override-channels conda

MySQL常用脚本

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《ELement》。&#x1f3af;&#x1f3af; &#x1…

Red Giant Trapcode Suite 红巨星粒子插件

Red Giant Trapcode Suite是一款用于在After Effects中模拟和建模3D粒子和效果的软件&#xff0c;由Red Giant Software公司开发。 该软件包包含11种不同的工具&#xff0c;可以帮助用户模拟火、水、烟、雪等粒子效果&#xff0c;以及创建有机视觉效果和3D元素。它还支持在AE与…

Jetson Orin NX 开发指南(9): MAVROS 的安装与配置

一、前言 由于 Jetson 系列开发板常作为自主无人机的机载电脑&#xff0c;而无人机硬件平台如 PX4 和 ArduPilot 等通过 MAVLink 进行发布无人机状态和位姿等信息&#xff0c;要实现机载电脑与 MAVLink 的通信&#xff0c;必须借助 Mavros 功能包&#xff0c;因此&#xff0c;…

PG14归档失败解决办法archiver failed on wal_lsn

问题描述 昨晚RepmgrPG14主备主库因wal日志撑爆磁盘&#xff0c;删除主库过期wal文件重做备库后上午进行主备状态巡查&#xff0c;主库向备库发送wal文件正常&#xff0c;但是查主库状态时发现显示有1条归档失败的记录。 postgres: archiver failed on 000000010000006F000000…

Tomcat的安装和配置

一.Tomcat下载&#xff1a;去Tomcat官网地址 在左侧Download中选择你需要下载的版本&#xff0c;这里我选择Tomcat9 根据电脑系统是32位还是64位选择&#xff0c;这里我选择64-bit Windows zip&#xff0c;点击即可下载 下载后直接解压&#xff0c;这里我解压在E盘的computer…

行业追踪,2023-10-12

自动复盘 2023-10-12 凡所有相&#xff0c;皆是虚妄。若见诸相非相&#xff0c;即见如来。 k 线图是最好的老师&#xff0c;每天持续发布板块的rps排名&#xff0c;追踪板块&#xff0c;板块来开仓&#xff0c;板块去清仓&#xff0c;丢弃自以为是的想法&#xff0c;板块去留让…

以单颗CMOS摄像头重构三维场景,维悟光子发布单目红外3D成像模组

维悟光子近期发布全新单目红外3D成像模组,现可提供下游用户进行测试导入。通过结合微纳光学元件编码和人工智能算法解码,维悟光子单目红外3D成像模组采用单颗摄像头,通过单帧拍摄,可同时获取像素级配准的3D点云和红外图像信息,可被应用于机器人、生物识别等广阔领域。 市场…

【RKNN】YOLO V5中pytorch2onnx,pytorch和onnx模型输出不一致,精度降低

在yolo v5训练的模型&#xff0c;转onnx&#xff0c;再转rknn后&#xff0c;测试发现&#xff1a; rknn模型&#xff0c;量化与非量化&#xff0c;相较于pytorch模型&#xff0c;测试精度都有降低onnx模型&#xff0c;相较于pytorch模型&#xff0c;测试精度也有降低&#xff…

缓存设计的创新之旅:架构的灵魂之一

缓存在架构设计中占有重要地位。缓存在提升性能中也扮演重要的角色。常见的有对资源的缓存&#xff0c;比如数据库连接池、http连接池&#xff0c;还有对数据的缓存等。缓存的设计可复杂也可简单&#xff0c;但是需要考虑的点却很多。 缓存对象 设计缓存的时候一定要考虑的是&…

大语言模型之十七-QA-LoRA

由于基座模型通常需要海量的数据和算力内存&#xff0c;这一巨大的成本往往只有巨头公司会投入&#xff0c;所以一些优秀的大语言模型要么是大公司开源的&#xff0c;要么是背后有大公司身影公司开源的&#xff0c;如何从优秀的开源基座模型针对特定场景fine-tune模型具有广大的…

香港专用服务器拥有良好的国际网络连接

香港服务器在多个领域有着广泛的应用。无论是电子商务、金融交易、游戏娱乐还是社交媒体等&#xff0c;香港服务器都能够提供高效稳定的服务。对于跨境电商来说&#xff0c;搭建香港服务器可以更好地满足亚洲用户的购物需求&#xff1b;对于金融机构来说&#xff0c;香港服务器…

当涉及到API接口数据分析时,主要可以从以下几个方面展开

当涉及到API接口数据分析时&#xff0c;主要可以从以下几个方面展开&#xff1a; 请求分析&#xff1a;可以统计每个API接口的请求次数、请求成功率、失败率等基础指标。这些指标可以帮助你了解API接口的使用情况&#xff0c;比如哪个API接口被调用的次数最多&#xff0c;哪个…

c++-list

文章目录 前言一、list介绍及使用1、list介绍2、list使用2.1 list构造函数的使用2.2 list iterator的使用2.3 list capacity的使用2.4 list modifiers的使用2.5 list使用算法库中的find模板生成find方法2.6 list中的sort方法 二、list模拟实现1、查看list源码的大致实现思路2、…