【安全】linux audit审计使用入门

文章目录

      • 1 audit简介
      • 2 auditctl的使用
      • 2 audit配置和规则
      • 3 工作原理
      • 4 audit接口调用
        • 4.1 获取和修改配置
        • 4.2 获取和修改规则
        • 4.3 获取审计日志
      • 5 audit存在的问题
        • 5.1 内核版本
        • 5.2 审计日志过多造成的缓存队列和磁盘问题
        • 5.2 容器环境下同一个命令的日志存在差异
      • 6 参考文档

1 audit简介

audit是Linux内核提供的一种审计机制,由于audit是内核提供的,因此,在使用audit的过程中就包含内核空间和用户空间部分:

  • rules:审计规则,其中配置了审计系统需要审计的操作
  • auditctl:用户态程序,用于审计规则配置和配置变更
  • kaudit:内核空间程序,根据配置好的审计规则记录发生的事件
  • auditd:用户态程序,通过netlink获取审计日志

通常的使用流程:

  • 用户通过auditctl配置审计规则
  • 内核的kauditd程序获取到审计规则后,记录对应的审计日志
  • 用户态的auditd获取审计日志并写入日志文件。

audit的主要应用场景是安全审计,通过对日志进行分析发现异常行为。

2 auditctl的使用

auditctl是用户态的控制程序,可以修改audit配置以及审计规则的操作。

auditctl的选项可以分成两类。

配置类:

  • -b:配置buffer的大小
  • -e:设置enabled标记
  • -f:设置failure标记
  • -s:返回整体的状态
  • –backlog_wait_time:设置backlog_wait_time

审计规则类:

  • -a & -A l,a:往某个规则表中增加需要记录的行为
  • -d:从某个规则表中删除规则
  • -D:删除所有规则
  • -F f=v:设置更多监控条件
  • -l:查看规则
  • -p:在文件监控上设置权限过滤
  • -i:当从文件中读取规则时忽略错误
  • -c:出错时继续
  • -r:设置rate_limit,每秒多少条消息
  • -R:从文件中读取规则
  • -S:设置要监控的系统调用名或者系统调用号
  • -w:增加监控点
  • -W:删除监控点

例如,假如我们想要获取调用execve系统调用的事件,可以增加下列的规则:

auditctl -a always,exit -S execve -F key=123456

然后就可以通过ausearch查找该日志:

ausearch -k 123456

如果想要获取执行tail命令的事件,可以增加规则:

auditctl -w /usr/bin/tail -p x -k 123456

然后使用tail命令查看通过ausearch命令查看日志:

time->Sun Apr 23 15:47:36 2023
type=PROCTITLE msg=audit(1682236056.128:4318964): proctitle=7461696C002D6E0032006C756F2E7368
type=PATH msg=audit(1682236056.128:4318964): item=1 name="/lib64/ld-linux-x86-64.so.2" inode=36969 dev=08:03 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0 objtype=NORMAL cap_fp=0000000000000000 cap_fi=0000000000000000 cap_fe=0 cap_fver=0
type=PATH msg=audit(1682236056.128:4318964): item=0 name="/usr/bin/tail" inode=100666597 dev=08:03 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:bin_t:s0 objtype=NORMAL cap_fp=0000000000000000 cap_fi=0000000000000000 cap_fe=0 cap_fver=0
type=CWD msg=audit(1682236056.128:4318964):  cwd="/root"
type=EXECVE msg=audit(1682236056.128:4318964): argc=4 a0="tail" a1="-n" a2="2" a3="luo.sh"
type=SYSCALL msg=audit(1682236056.128:4318964): arch=c000003e syscall=59 success=yes exit=0 a0=20749e0 a1=218ecd0 a2=2179ee0 a3=7fffa4a99460 items=2 ppid=58219 pid=59519 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts1 ses=956 comm="tail" exe="/usr/bin/tail" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key="123456"

可以看到,开头一行是事件发生的事件,后面的若干行是执行tail命令产生的事件日志,有些日志很简单,例如CWD,表示操作的当前路径,而有些日志很复杂,例如SYSCALL,有接近30个字段。每行日志都有type字段和msg字段(冒号前面是时间戳,可以通过date命令转换,冒号后面是事件ID,同一条规则产生的事件的事件ID是一样的,因此,如果不使用ausearch查找某条规则产生的日志,就需要先用key进行查找,找到对应的事件ID,然后再通过事件ID查找产生的所有日志)。

这里的tail命令的监控,我们只关注上面的2个事件:

  • EXECVE:这里给出了调用的参数,argc和argv
  • SYSCALL:arch(架构),syscall(系统调用号,可以通过ausyscall --dump查看),success(调用是否成功),exit(返回码),a0~a3为系统调用前4个参数,ppid(父进程ID),pid(进程ID),comm(执行的命令),exe(执行execve的可执行文件)

2 audit配置和规则

通过auditctl -s命令可以看到当前audit的一些属性和配置:

  • enabled:表明audit是否会记录事件,可以通过auditctl -e设置
  • failure:表明audit是否会记录失败事件,设置为1,才会记录失败事件
  • pid:占用audit的进程的pid
  • rate_limit:内核每秒发送的最大消息数,如果是0,表示不限制
  • backlog_limit:缓存队列长度限制
  • lost:由于缓存队列超过限制而导致的丢失的记录数
  • backlog:当前缓存队列中等待读取的记录数
  • backlog_wait_time:缓存队列满时的等待时间

其中backlog_wait_time是后面的版本提供的。

3 工作原理

除了上述的使用外,audit还有一个特点:独占性。实际的审计操作是由内核中的kauditd完成的,auditd再通过netlink读取审计日志。而kauditd是只允许与一个用户态进程连接,因此,如果系统上已经有auditd进程与kauditd建立连接,后续其他进程进行了抢占,auditd则会断开。那么,如果判断当前是哪个进程与kautid建立了连接呢?可以通过auditctl -s中的pid进行判断。

另一个重要的地方是kaudit如何去应用配置的规则。在auditctl的-a <l,a>选项中,给出的选项含义是:将规则和对应的action加入到list后面。list有4种:task、exit、user、exclude,action有2种:never、always。

task、exit、user分别表示审计事件的三种类型:user事件是指与用户相关的事件,例如用户登录、注销、切换等。task是指与进程相关的事件,例如进程创建、退出、切换等。exit是指与系统调用相关的事件。exclude只是一个关键字,用于排除不需要审计的文件或者目录。因此,这里面的事件类型与其他的某些选项有强相关:

  • -a用于增加规则,-w用于监视文件,两者不能同时使用,说明在实现上,分别维护了以事件类型进行分类的4个列表,同时还维护了需要监视的文件列表
  • -S指定系统调用号,因此,只能用于-a exit

配置和规则的变更:

当通过auditctl操作配置或者规则时,会通过netlink将规则发送到内核,内核接收到到配置后会对内部的配置或者规则进行更新
对于规则来说,内核(4.19.281)内部会维护7个链表:

  • AUDIT_FILTER_USER:用户生成的日志
  • AUDIT_FILTER_TASK:进程创建
  • AUDIT_FILTER_ENTRY:系统调用入口
  • AUDIT_FILTER_WATCH:文件系统监控
  • AUDIT_FILTER_EXIT:系统调用退出
  • AUDIT_FILTER_EXCLUDE:审计日志排除
  • AUDIT_FILTER_FS

请添加图片描述

4 audit接口调用

auditctl使用netlink与内核进行交互,因此,要想实现audit的一些能力,就需要采用netlink实现一套交互接口,幸运的是,已经有库可以完成这项工作:yum install -y audit-libs-devel,然后编译时带上-laudit

安装完成后,可以查看头文件/usr/include/libaudit.h看下提供的方法。

4.1 获取和修改配置
#include <iostream>
#include <libaudit.h>using namespace std;int main() {int fd = audit_open();audit_request_status(fd);struct audit_reply reply;audit_get_reply(fd, &reply, GET_REPLY_BLOCKING, 0);struct audit_status *status;status = reply.status;cout <<"auditctl -s return:" <<endl;cout << "enabled=" << status->enabled << endl;cout << "failure=" << status->failure << endl;cout << "pid=" << status->pid << endl;cout << "rate_limit=" << status->rate_limit << endl;cout << "backlog_limit=" << status->backlog_limit << endl;cout << "lost=" << status->lost << endl;cout << "backlog=" << status->backlog << endl;return 0;
}

先试用audit_request_status()向内核发送请求,表明要获取配置信息,然后再通过audit_get_reply()接收数据,数据放在struct audit_reply的结构体:

// /usr/src/libaudit.h
struct audit_reply {int                      type;int                      len;struct nlmsghdr         *nlh;struct audit_message     msg;/* Using a union to compress this structure since only one of* the following should be valid for any packet. */union {struct audit_status     *status;struct audit_rule_data  *ruledata;struct audit_login      *login;char                    *message;struct nlmsgerr         *error;struct audit_sig_info   *signal_info;struct daemon_conf      *conf;
#ifdef AUDIT_FEATURE_BITMAP_ALLstruct audit_features   *features;
#endif};
};

如果是获取配置信息,此时数据放在status中:

// include/uapi/linux/audit.h
struct audit_status {__u32           mask;           /* Bit mask for valid entries */__u32           enabled;        /* 1 = enabled, 0 = disabled */__u32           failure;        /* Failure-to-log action */__u32           pid;            /* pid of auditd process */__u32           rate_limit;     /* messages rate limit (per second) */__u32           backlog_limit;  /* waiting messages limit */__u32           lost;           /* messages lost */__u32           backlog;        /* messages waiting in queue */union {__u32   version;        /* deprecated: audit api version num */__u32   feature_bitmap; /* bitmap of kernel audit features */};
};

因此,只要读取返回的audit_reply中的status中的上述字段即可。需要注意的是,如果audit_get_reply()中的第3个参数设置为GET_REPLY_NONBLOCKING,可能拿不到数据,因为fd可能还没有可读的数据,所以,这里要么设置为GET_REPLY_BLOCKING,要么使用select:

#include <iostream>
#include <libaudit.h>using namespace std;int main() {struct timeval t = {.tv_sec = 0, .tv_usec = 500000};int fd = audit_open();audit_request_status(fd);fd_set read_mask;FD_ZERO(&read_mask);FD_SET(fd, &read_mask);select(fd+1, &read_mask, NULL, NULL, &t);struct audit_reply reply;audit_get_reply(fd, &reply, GET_REPLY_NONBLOCKING, 0);struct audit_status *status;status = reply.status;cout <<"auditctl -s return:" <<endl;cout << "enabled=" << status->enabled << endl;cout << "failure=" << status->failure << endl;cout << "pid=" << status->pid << endl;cout << "rate_limit=" << status->rate_limit << endl;cout << "backlog_limit=" << status->backlog_limit << endl;cout << "lost=" << status->lost << endl;cout << "backlog=" << status->backlog << endl;return 0;
}

对于修改配置的操作,libaudit直接提供了对应的api函数,例如,设置backlog_limit,可以直接调用audit_set_backlog_limit()。

4.2 获取和修改规则
#include <iostream>
#include <libaudit.h>using namespace std;int main() {struct timeval t = {.tv_sec = 0, .tv_usec = 500000};int fd = audit_open();do {audit_request_rules_list_data(fd);fd_set read_mask;FD_ZERO(&read_mask);FD_SET(fd, &read_mask);select(fd+1, &read_mask, NULL, NULL, &t);struct audit_reply reply;audit_get_reply(fd, &reply, GET_REPLY_NONBLOCKING, 0);if(reply.type == NLMSG_DONE) {break;}struct audit_rule_data *rules;rules = reply.ruledata;cout <<"auditctl -l return:" <<endl;cout << audit_flag_to_name(rules->flags) << endl;cout << audit_action_to_name(rules->action) << endl;} while(true);return 0;
}

获取规则跟获取配置的区别只是发起操作的函数和数据解析不同,获取规则使用audit_request_rules_list_data()发起操作,解析数据时则需要解析struct audit_rule_data的数组。

#include <iostream>
#include <libaudit.h>
#include <linux/audit.h>using namespace std;int main() {int fd = audit_open();struct audit_rule_data *rule = new(struct audit_rule_data);audit_rule_syscall_data(rule, 57);audit_add_rule_data(fd, rule, AUDIT_FILTER_EXIT, AUDIT_NEVER);return 0;
}

上面的代码相当于auditctl -a exit,never -S execve

#include <iostream>
#include <libaudit.h>
#include <linux/audit.h>using namespace std;int main() {int fd = audit_open();struct audit_rule_data *rule = new(struct audit_rule_data);audit_add_watch(&rule, "/etc/passwd");audit_add_rule_data(fd, rule, AUDIT_FILTER_EXIT, AUDIT_ALWAYS);return 0;
}

上面的代码相当于auditctl -w /etc/passwd -p rwxa

4.3 获取审计日志

获取升级日志还是使用netlink的方式读取:

#include <iostream>
#include <libaudit.h>
#include <string.h>
#include <unistd.h>using namespace std;int main() {int audit_fd = audit_open();if (audit_fd < 0) {cout << "open audit fail:" << strerror(errno) << endl;return -1;}audit_set_enabled(audit_fd, 1);struct audit_reply audit_rep;int ret;struct timeval t = {.tv_sec = 5, .tv_usec = 0};pid_t cur_pid = getpid();ret = audit_set_pid(audit_fd, static_cast<uint32_t>(cur_pid),WAIT_NO);if (ret <= 0) {cout << "audit_set_pid fail:" << strerror(errno) << endl;return -1;}do {fd_set read_mask;FD_ZERO(&read_mask);FD_SET(audit_fd, &read_mask);ret = select(audit_fd + 1, &read_mask, nullptr, nullptr, &t);if (ret <= 0) {cout << "select fail:" << strerror(errno) << endl;continue;}ret = audit_get_reply(audit_fd, &audit_rep,GET_REPLY_NONBLOCKING, 0);if (ret <= 0) {cout << "open audit fail:" << strerror(errno) << endl;}printf("%s %s", __FUNCTION__, audit_rep.msg.data);cout << audit_rep.msg.data << endl;} while(true);return 0;
}

5 audit存在的问题

如果只是正常使用audit:配置audit规则,查看审计日志,也没啥问题,但是,实际使用过程中,还是存在一些问题。

5.1 内核版本

不同版本的内核在实现机制上有所不同,因此,运行表现和参数控制上也有所不同:

  • 小于3.14的内核没有提供设置backlog_wait_time的接口
5.2 审计日志过多造成的缓存队列和磁盘问题

audit_log_end将审计日志放到audit_queue的队尾,如果审计日志较多,可能会导致队列很长,占用的资源增多,因此,内核也提供了一些参数进行控制:

  • backlog_limit:缓存队列长度限制
  • backlog_wait_time:缓存队列满的等待时间
// audit_log_start(linux-4.19.281)// auditd_test_task:检查当前进程是否是audit daemon进程// audit_ctl_owner_current:检查当前进程是否持有audit_cmd_mutex锁// 因此,这里进入if的条件是:当前进程不是audit daemon进程,并且没有持有锁if (!(auditd_test_task(current) || audit_ctl_owner_current())) {// 获取audit_backlog_wait_time,就是auditctl -s中的backlog_wait_timelong stime = audit_backlog_wait_time;// audit_backlog_limit就是auditctl -s中的backlog_limit,默认值是64// 因此,这里进入while的条件是:设置了backlog_limit,并且当前缓存队列的长度大于backlog_limitwhile (audit_backlog_limit &&(skb_queue_len(&audit_queue) > audit_backlog_limit)) {// 唤醒kauditd处理队列中的日志wake_up_interruptible(&kauditd_wait);/* sleep if we are allowed and we haven't exhausted our* backlog wait limit */// 如果当前进程允许休眠,并且backlog_wait_time大于0,则进入if,backlog_wait_time默认是60sif (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {// 创建等待队列的节点DECLARE_WAITQUEUE(wait, current);// 将刚才创建的等待队列的节点wait加入到队列audit_backlog_wait中add_wait_queue_exclusive(&audit_backlog_wait,&wait);set_current_state(TASK_UNINTERRUPTIBLE);// 让当前进程休眠一段时间stime = schedule_timeout(stime);// 将wait从audit_backlog_wait队列中移除remove_wait_queue(&audit_backlog_wait, &wait);} else {// 如果当前进程没有休眠,则先检查审计日志的生成速度是否超过rate_limitif (audit_rate_check() && printk_ratelimit())pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",skb_queue_len(&audit_queue),audit_backlog_limit);// lost自增1,并在审计日志中打印缓存队列超过限制audit_log_lost("backlog limit exceeded");return NULL;}}}

从上面的代码可以看出,当队列长度超过backlog_limit时,内核会休眠一段时间backlog_wait_time(默认60秒),如果backlog_limit为0,则不会休眠,而是会打印backlog limit exceeded日志。

因此,如果backlog_wait_time不为0,而日志太多时,可能导致内核频繁休眠,极端情况下,系统直接卡死。

如果要解决这个问题,可以从几个方面入手:

  • 审计规则尽可能只配置必要的,防止生成大量无用的审计日志
  • 根据机器配置增加backlog_limit,例如,将backlog_limit可以设置为8193或者更大
  • backlog_wait_time设置为0,当日志过多时直接丢弃,防止影响日常的使用
  • 审计日志的消费者尽可能快速消费日志,可能的情况下,可以增加丢弃策略,防止审计日志堆积

当审计日志过多,还会造成磁盘占用率的问题:当审计日志太多,可能会占用大量磁盘空间。

需要注意的是,即使没有配置审计规则,日志中也可能有审计日志,pam认证、服务启动等,在没有规则的情况下内核也会生成审计日志。

同时,从3.16.0开始,内核增加了多消费者,允许多个进程同时读取审计日志,那么,如果存在其他进程也读取审计然后写到日志文件的话,磁盘占用的问题又会放大,因此,对于磁盘占用的问题,可以从以下几个方面入手:

  • 是否有其他进程也读取了审计日志
  • 在没有配置审计规则的情况下是否也会产生大量日志
5.2 容器环境下同一个命令的日志存在差异

在容器环境下,同一个命令的日志可能存在差异,因为命令的实现有所不同,比较典型的是,有些镜像的vi是重定向到busybox,有些则是跟主机一样的二进制文件,那么他们产生的日志就不同,就会造成分析上的困难。

6 参考文档

  • RHEL Audit System Reference
  • 读懂audit日志
  • Audit framework

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/157135.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法|双指针系列No.6】leetcode LCR 179. 查找总价格为目标值的两个商品

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…

Rule-Engine-Starter V1.0.0

一个轻量级的规则引擎、搜索引擎&#xff0c;让条件匹配简单、优雅。 GIT地址 https://gitcode.cosmoplat.com/15011240224/rule-engine-starter 介绍 Rule-Engine-Starter 是一个轻量级规则引擎&#xff0c;V1.0.0主要解决条件匹配问题。比如飞书文档&#xff0c;每个文档都…

电脑系统升级Win11变卡顿?如何解决!

关于Win11系统更新的相关问题&#xff0c;Win11每一次更新之后会给大家带来更多功能&#xff01;但是每次更新也可能会出现掉驱动、无法打开应用、甚至是蓝屏或者进不去主页等问题&#xff01;所以为了帮助大家预防这些更新出现的后遗症&#xff0c;分享了一些小的方法&#xf…

[Error]在Swift项目Build Settings的Preprocessor Macros中定义的宏无效的问题

问题 如图&#xff0c;在Build Settings -> Preprocessor Macros中添加了ISADEMO1。但在代码中判断无效&#xff0c;还是会输出“isn’t ADemo” #if ISADEMOprint("is ADemo") #elseprint("isnt ADemo") #endif解决 如图&#xff0c;要让Preproces…

【已解决】MySQL:执行sql查询出错误数据(MySQL隐藏机制-类型转换导致)

目录 问题现象&#xff1a; 问题分析&#xff1a; 结论&#xff1a; 解决方法&#xff1a; 拓展&#xff1a; 问题现象&#xff1a; 今天在项目开发中发现了一个非常奇怪的bug&#xff1a; 如图&#xff0c;我在数据库中以“dept_id 1712651046956421123”为条件&#xff…

WEEX编译|加密市场三季度回顾及未来展望

作者&#xff1a;Greg Cipolaro&#xff0c;NYDIG 全球研究主管 编译&#xff1a;WEEX 唯客交易所 本文要点&#xff1a; ● 在充满挑战的第三季度&#xff0c;比特币价格下跌 11.1%&#xff0c;因为众多资产类别都在努力应对利率上升的影响和对经济衰退的担忧。 ● 比特币…

CentOS 7 基于C 连接ZooKeeper 客户端

前提条件&#xff1a;CentOS 7 编译ZooKeeper 客户端&#xff0c;请参考&#xff1a;CentOS 7 编译ZooKeeper 客户端 1、Docker 安装ZooKeeper # docker 获取zookeeper 最新版本 docker pull zookeeper# docker 容器包含镜像查看 docker iamges# 准备zookeeper 镜像文件挂载对…

什么是指标体系,怎么搭建一套完整的指标体系?(附PDF素材)

什么是指标体系&#xff0c;怎么搭建一套完整的指标体系&#xff1f;数字化转型过程中&#xff0c;这个问题一直困扰着数据分析师。主要体现在&#xff1a; 各部门根据业务需求&#xff0c;都有一部分量化指标&#xff0c;但不够全面&#xff0c;对企业整体数据分析应用能力提…

3D机器视觉:解锁未来的立体视野

原创 | 文 BFT机器人 机器视觉领域一直在不断演进&#xff0c;从最初的二维图像处理&#xff0c;逐渐扩展到了更复杂的三维领域&#xff0c;形成了3D机器视觉。3D机器视觉技术的涌现为计算机系统带来了全新的感知和理解能力&#xff0c;这一领域的发展正日益受到广泛关注。本文…

掌动智能浅析Web自动化测试的重要性

在现代Web开发中&#xff0c;确保Web应用程序的质量和稳定性至关重要。Web自动化测试工具成为了开发团队的关键资源&#xff0c;帮助他们自动化测试流程、减少手动劳动&#xff0c;提高测试覆盖率和效率。本文将介绍Web自动化测试的重要性是什么! Web自动化测试的重要性&#x…

PanoFlow:学习360°用于周围时间理解的光流

1.摘要&#xff1a; 光流估计是自动驾驶和机器人系统中的一项基本任务&#xff0c;它能够在时间上解释交通场景。自动驾驶汽车显然受益于360提供的超宽视野&#xff08;FoV&#xff09;◦ 全景传感器。 然而&#xff0c;由于全景相机独特的成像过程&#xff0c;为针孔图像设计…

【二甲医院his系统源码】医疗卫生信息化大数据平台源码

基于云计算技术的SaaS服务的医院信息系统源码 云HIS系统有效实现医疗数据共享与交换&#xff0c;解决数据重复采集及信息孤岛等问题。重构管理服务流程&#xff0c;重建统一的信息架构体系&#xff0c;重造病人服务环境&#xff0c;向不同类型的医疗机构提供SaaS化HIS服务解决…

业务安全五重价值:防攻击、保稳定、助增收、促合规、提升满意度

目录 防范各类威胁攻击 保障业务的连续性和稳定性 保障业务的合规性 提升企业营收和发展 提升企业满意度和品牌知名度 2023年暑假被“票贩子”和“黄牛”攻陷。他们利用各种手段抢先预约名额&#xff0c;然后加价出售给游客&#xff0c;导致了门票供不应求的局面&#xff…

[42000][923] ORA-00923: 未找到要求的 FROM 关键字

在oracle数据库写分页查询&#xff0c;使用 rownum时候出错&#xff0c; 代码&#xff1a; SELECT *FROM (SELECT *, ROWNUM AS rnumFROM test t ) WHERE rnum BETWEEN 1 AND 5; 报错&#xff1a; [42000][923] ORA-00923: 未找到要求的 FROM 关键字 Position: 31 问题原因…

1014蓝桥算法双周赛,学习算法技巧,助力蓝桥杯

家人们&#xff0c;我来免费给大家送福利了&#xff01;&#xff01;&#xff01; 【1014蓝桥算法双周赛 】 背景 蓝桥杯全国软件和信息技术专业人才大赛是由工业和信息化部人才交流中心举办的全国性IT学科赛事。参赛高校超过1200余所&#xff0c;累计参赛人数超过40万人。该…

如何理解BFC、开启BFC、BFC解决哪些问题

1.BFC 概念 BFC 英文名为 Block Formatting Context (块级格式化上下文) 具体可查看 MDN 2.BFC的作用 元素开启BFC后&#xff0c;子元素不会发生margin塌陷问题元素开启BFC后&#xff0c;子元素浮动&#xff0c;元素不发生高度塌陷元素开启BFC后&#xff0c;该元素不被其他元…

java案例RSA分段加密解密,签名验签,公钥加密私钥解密,私钥加密公钥解密,解密乱码怎么解决

一. 原理 非对称加密算法是一种密钥的保密方法。 非对称加密算法需要两个密钥&#xff1a;公开密钥&#xff08;publickey:简称公钥&#xff09;和私有密钥&#xff08;privatekey:简称私钥&#xff09;。公钥与私钥是一对&#xff0c;如果用公钥对数据进行加密&#xff0c;只…

纯 CSS 实现瀑布流布局的方法

纯 CSS 实现瀑布流布局的方法 这种方式兼容性不是很好&#xff0c;全部支持需要些时间&#xff0c;但是目前是可以使用 css 写出来的 display: grid; grid-template-columns: repeat(4, 1fr); grid-gap: 10px; grid-template-rows: masonry;全部的 css .container {display:…

凉鞋的 Godot 笔记 108. 第二个通识:增删改查

在这一篇&#xff0c;我们来学习此教程的第二个通识&#xff0c;即&#xff1a;增删改查。 增删改查我们不只是一次接触到了。 在最先接触的场景窗口中&#xff0c;我们是对 Node 进行增删改查。 在文件系统窗口中&#xff0c;我们是对文件&文件夹进行增删改查&#xff1…

【单片机】18-红外线遥控

一、红外遥控背景知识 1.人机界面 &#xff08;1&#xff09;当面操作&#xff1a;按键&#xff0c;旋转/触摸按键&#xff0c;触摸屏 &#xff08;2&#xff09;遥控操作&#xff1a;红外遥控&#xff0c;433M/2.4G无线通信【穿墙能力强】&#xff0c;蓝牙-WIFI-Zigbee-LoRa等…