数学建模——平稳时间序列分析方法

目录

1、平稳性的Daniel检验

(1)Spearman相关系数假设检验

(2)时间序列平稳性的Danniel假设检验

 案例

【模型分析】

1、原始数据at的平稳性检验

2、一阶差分序列的平稳性检验

3、二阶差分序列的平稳性检验

4、建立AR(2)模型

【模型求解】


1、平稳性的Daniel检验

(1)Spearman相关系数假设检验

设二维总体(X,Y)的样本观测值为:(x1,y1),(x2,y2),…,(xn,yn), 得各分量X,Y的样本为(x1,…,xn),(y1,…,yn),设(x1,…,xn)的秩统计量为R1,R2,…,Rn;(y1,y2,…,yn)的秩统计量为S1,S2,…,Sn。当X,Y紧密相关时,这两组秩统计量也是紧密相关的

向量的秩:

向量的秩是指矩阵中非零行向量组成的最大线性无关组的向量个数。在线性代数中,我们常常将向量表示为列向量,也即 n×1的矩阵。

一个矩阵的秩是指它的列向量或行向量中线性无关的向量的个数。可以用初等变换将矩阵变换为行最简形,行最简形的矩阵就是阶梯型矩阵。阶梯型矩阵的非零行的个数即为矩阵的秩。

对于 n × m 的矩阵 A,它的秩记作 rank(A)。秩的性质包括:

1. rank(A) ≤ min(n, m),即矩阵的秩不会超过它的行数和列数中的较小值。
2. 对于同型矩阵 A 和 B,如果 A 可以通过基本行(列)运算转换为 B,那么它们的秩相等。
3. 对于同型矩阵 A 和 B,有 rank(A + B) ≤ rank(A) + rank(B)。

秩的求解方法包括高斯消元法、矩阵的特征值特征向量等。

(x1,…,xn)的秩统计量为R1,R2,…,Rn:

在统计学中,对于给定的一组数据 (x1, x2, ..., xn),可以计算出一系列的秩统计量 R1, R2, ..., Rn,用于描述数据的排序性质。每个秩统计量 Ri 表示对应数据 xi 在原始数据中的排名。

秩统计量常用于非参数统计方法,特别是在样本数据不服从正态分布或具有明显偏斜的情况下。它们提供了一种基于排序的方法来分析数据,不受异常值的影响,并可以在不依赖具体分布的情况下得到一些推断性的结论。

以下是对每个秩统计量的解释:
- R1 表示 x1 在排序后的数据中的排名。
- R2 表示 x2 在排序后的数据中的排名。
- ...
- Rn 表示 xn 在排序后的数据中的排名。

对于具体的数据样本,可以通过对原始数据进行排序,然后分配相应的秩统计量来计算每个数据的排名。排名方式可以根据需要选择是按升序还是降序进行排列。

通过计算秩统计量,可以进行一系列非参数的统计检验、回归分析和描述性统计分析,例如秩和检验、秩相关分析和秩和相关系数等。这些方法可以提供一种有效的手段来处理各种类型的数据,特别是对于小样本或不满足正态分布假设的情况下。

定义Spearman相关系数

经过运算,可以证明

对Spearman相关系数,可以作假设检验:

在H0成立时,统计量

对给你的显著水平α,查自由度为n-2的t分布的临界值tα/2(n-2),当|T|≤tα/2(n-2)时,接受H0,否则决绝H0.

(2)时间序列平稳性的Danniel假设检验

设时间序列样本a1,a2,…,an为Xt的样本,记at的秩为Rt=R(at),考虑变量(t,Rt),t=1,2,…,n的Spearman相关系数为

构造统计量

作假设检验:H0:序列Xt平稳;H1:序列Xt非平稳(上升或下降)

(H0的意思t和Rt不相关,即相关系数为0,H1的意思t和Rt相关,即Rt随t增大呈线性递增或递减)

Danniel检验方法:对给定的显著系数α,查自由度为n-2的t分布的临界值tα/2(n-2),若统计量T满足|T|>tα/2(n-2),则拒绝H 0,即认为序列非平稳,若|T|≤tα/2(n-2),接受H0,即Xt是平稳的。

 案例

月份t

1

2

3

4

5

6

销售收入yt

533.8

574.6

606.9

649.8

705.1

772.0

月份t

7

8

9

10

11

销售收入yt

816.4

892.7

963.9

1015.1

1102.7

 用AR模型预测12月份的销售额。

【模型分析】

1、原始数据at的平稳性检验

设1-11月份销售数据为at,根据公式计算得到Spearman相关系数为qt=1.根据公式

α=0.05,计算得到T统计量为+∞,即|T|> tα/2(11-2)=2.2622,即拒绝H0,认为Xt非平稳。即at非平稳时间序列。

at=[533.8 574.6 606.9 649.8 705.1 772 816.4 892.7 963.9 1015.1 1102.7];
Rt=tiedrank(at);
n=length(Rt);
t=1:n;
dt=t-Rt;
qt=1-6/n/(n^2-1)*sum(dt.^2);
T=qt*(n-2)^0.5/(1-qt^2)^0.5;
2、一阶差分序列的平稳性检验

令bt=at-at-1,t=2,3,…,11,将bt代入【4】和【5】,计算得到T统计量为T= 3.6934>tα/2(10-2)=2.3,即bt也非平稳序列。

at=[533.8 574.6 606.9 649.8 705.1 772 816.4 892.7 963.9 1015.1 1102.7];
bt=diff(at);
Rt=tiedrank(bt);
n=length(Rt);
t=1:n;
dt=t-Rt;
qt=1-6/n/(n^2-1)*sum(dt.^2);
T=qt*(n-2)^0.5/(1-qt^2)^0.5;
3、二阶差分序列的平稳性检验

 取ct=bt-bt-1,t=2,3,…,10,将ct代入【4】和【5】,计算,得到统计量T= 0.4934<tα/2(9-2)=2.36,即ct是平稳序列。

at=[533.8 574.6 606.9 649.8 705.1 772 816.4 892.7 963.9 1015.1 1102.7];
bt=diff(at);
ct=diff(bt);
Rt=tiedrank(ct);
n=length(Rt);
t=1:n;
dt=t-Rt;
qt=1-6/n/(n^2-1)*sum(dt.^2);
T=qt*(n-2)^0.5/(1-qt^2)^0.5;
4、建立AR(2)模型

根据上面的检验,可建立自回归模型AR(2)对at进行预测:e1,e2是待定参数,εt是随机扰动。

【模型求解】

 根据表中数据,采用最小二乘拟合,求得模型为

at=[533.8 574.6 606.9 649.8 705.1 772 816.4 892.7 963.9 1015.1 1102.7];
m=ar(at',2);
>> mm =
Discrete-time AR model:  A(z)y(t) = e(t)A(z) = 1 - 1.95 z^-1 + 0.9431 z^-2  

将a10,a11代入上公式,预测12月份销售额为a12=1192.9。并将预测值和实测值对比显示在下图。

at=[533.8 574.6 606.9 649.8 705.1 772 816.4 892.7 963.9 1015.1 1102.7];
for k=3:12at1(k)=1.95*at(k-1)-0.9431*at(k-2);
end
t=1:9;
at=at(3:end);
at1=at1(3:end-1);
plot(t,at,‘*’,t,at1,‘+’),legend(‘实测值’,‘预测值')

另外:matlab时间序列工具箱有AR(2)拟合函数m=ar(at',2);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/159108.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT生产力|实用指令(prompt)

GPT已经成为一个不可或缺的科研生产力了&#xff0c;但是大多数人只知晓采用直接提问、持续追问以及细节展开的方式来查阅相关资料&#xff0c;本文侧重于探讨“限定场景限定角色限定主题”、“可持续追问细节展开”等多种方式来获取更多信息&#xff0c;帮人们解决更多问题。 …

二叉树的层序遍历

利用队列的先进先出&#xff0c;把根的节点的指针存到队列中&#xff0c;然后再出队列&#xff0c;在出队列时再把他的左右子树的节点指针带进去&#xff0c;循环到队列为空&#xff08;树也就遍历完了&#xff09; void LevelOrder(BTNode* root)//层序遍历 {Queue L;//定义…

Docker Compose命令讲解+文件编写

docker compose的用处是对 Docker 容器集群的快速编排。&#xff08;源码&#xff09; 一个 Dockerfile 可以定义一个单独的应用容器。但我们经常碰到需要多个容器相互配合来完成某项任务的情况&#xff08;如实现一个 Web 项目&#xff0c;需要服务器、数据库、redis等&#…

Unity角色或摄像机移动和旋转的控制脚本

该脚本挂载到需要被移动、旋转控制的物体身上&#xff0c;也可以之间挂在到摄像机上&#xff01; 挂载到摄像机上可以实现第一人称视角控制&#xff01; 挂载到物体身上&#xff0c;配合摄像机跟踪脚本可以实现&#xff0c;第三人称视角控制&#xff01; 第一人称视角 将角…

【微服务】微服务初步认识 - 微服务技术如何学习 · 认识微服务架构

微服务&#xff08;1&#xff09; 文章目录 【微服务】&#xff08;1&#xff09;1. 微服务相关技术栈2. 微服务学习路线3. 认识微服务架构3.1 单体架构3.2 分布式架构3.3 微服务(架构)3.4 微服务(架构)治理落实相关的SpringCloud、SpringCloudAlibaba和阿里巴巴的Dubbo提供的服…

【MySql】6- 实践篇(四)

文章目录 1. 为何SQL语句逻辑相同&#xff0c;性能却差异巨大1.1 性能差异大的SQL语句问题1.1.1 案例一:条件字段函数操作1.1.2 案例二:隐式类型转换1.1.3 案例三:隐式字符编码转换 2. 为何只查询一行的SQL执行很慢2.1 场景一:查询长时间不返回2.1.1 等MDL锁2.1.2 等 flush2.1.…

TCP/IP(八)TCP的连接管理(五)四次握手

一 tcp连接断开 每一个TCP报文的超时重传都由一个特定的内核参数来控制 ① 四次握手的过程 遗留&#xff1a; 谁先发送FIN包,一定是client吗? --> upload和download补充&#xff1a; 主动和被动断开连接的场景 "四次握手过程描述" F --> FIN --> F…

车载电子电器架构 —— 国产基础软件现在与未来

我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 屏蔽力是信息过载时代一个人的特殊竞争力&#xff0c;任何消耗你的人和事&#xff0c;多看一眼都是你的不…

飞书应用机器人文件上传

背景&#xff1a; 接上一篇 flask_apscheduler实现定时推送飞书消息&#xff0c;当检查出的异常结果比较多的时候&#xff0c;群里会有很多推送消息&#xff0c;一条条检查工作量会比较大&#xff0c;且容易出现遗漏。   现在需要将定时任务执行的结果记录到文件&#xff0c;…

使用EasyDarwin+ffmpeg+EasyPlayerPro完成rtsp的推流操作和拉流操作

本文分享在做视频类测试过程中所用到的工具EasyDarwinffmpegEasyPlayerPro 首先说一下EasyDarwin,简单来讲&#xff0c;它就是个推流和拉流及系统消耗的监测软件&#xff0c;具体使用方法我会写在下方。 EasyDarwin 1、解压下载好的EasyDarwin压缩包&#xff0c;并找到EasyD…

后端:推荐 2 个 .NET 操作的 Redis 客户端类库

目录 Redis特点 Redis场景 1. StackExchange.Redis 2. FreeRedis &#x1f680; 快速入门 &#x1f3a3; Master-Slave (读写分离) &#x1f4bb; Pipeline (管道)示例 &#x1f30c; Redis Cluster (集群) Redis &#xff0c;是一个高性能(NOSQL)的key-value数据库,Re…

【TensorFlow2 之014】在 TF 2.0 中实现 LeNet-5

一、说明 在这篇文章中&#xff0c;我们将展示如何在 TensorFlow 中实现像 \(LeNet-5\) 这样的基础卷积神经网络。LeNet-5 架构由 Yann LeCun 于 1998 年发明&#xff0c;是第一个卷积神经网络。 数据黑客变种rs 深度学习 机器学习 TensorFlow 2020 年 2 月 29 日 | 0 …

GB28181平台简介

产品简介 LiveMedia视频中间件是支持部署到本地服务器或者云服务器的纯软件服务&#xff0c;也提供服务器、GPU一体机全包服务&#xff0c;提供视频设备管理、无插件、跨平台的实时视频、历史回放、语音对讲、设备控制等基础功能&#xff0c;支持视频协议有海康、大华私有协议…

竞赛 深度学习LSTM新冠数据预测

文章目录 0 前言1 课题简介2 预测算法2.1 Logistic回归模型2.2 基于动力学SEIR模型改进的SEITR模型2.3 LSTM神经网络模型 3 预测效果3.1 Logistic回归模型3.2 SEITR模型3.3 LSTM神经网络模型 4 结论5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 …

Idea创建springboot工程的时候,发现pom文件没有带<parent>标签

今天创建springboot工程&#xff0c;加载maven的时候报错&#xff1a; 这个问题以前遇到过&#xff0c;这是因为 mysql-connector-j 没有带版本号的原因&#xff0c;但是springboot的依赖的版本号不是都统一交给spring-boot-starter-parent管理了吗&#xff0c;为什么还会报错&…

华为云云耀云服务器L实例评测|华为云耀云服务器L实例评测用例(五)

六、华为云耀云服务器L实例评测用例&#xff1a; “兵马未动&#xff0c;粮草先行”&#xff0c;随着企业业务的快速发展&#xff0c;服务器在数字化建设体系至关重要&#xff0c;为了保证服务器的稳定性、可靠性&#xff0c;需要对服务器进行评测&#xff0c;以确保服务器能够…

kafka详解(三)

2.2 Kafka命令行操作 2.2.1 主题命令行操作 1&#xff09;查看操作主题命令参数 [aahadoop102 kafka]$ bin/kafka-topics.sh2&#xff09;查看当前服务器中的所有topic (配置了环境变量不需要写bin/) [aahadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop10…

Linux gcc和make学习

文章目录 GCCgcc的安装gcc的工作流程 makefilemakefile的规则工作原理自动生成makefile的变量自定义变量预定义变量自动变量 模式匹配函数wildcard函数patsubst函数 伪声明 GCC gcc全程是&#xff08;GNU compiler collection CNU编译器套件&#xff09;&#xff0c;是由GNU开发…

想要精通算法和SQL的成长之路 - 分割数组的最大值

想要精通算法和SQL的成长之路 - 分割数组的最大值 前言一. 分割数组的最大值1.1 二分法 前言 想要精通算法和SQL的成长之路 - 系列导航 一. 分割数组的最大值 原题链接 首先面对这个题目&#xff0c;我们可以捕获几个关键词&#xff1a; 非负整数。非空连续子数组。 那么我…

线性排序:如何根据年龄给100万用户数据排序?

文章来源于极客时间前google工程师−王争专栏。 桶排序、计数排序、基数排序时间复杂度是O(n)&#xff0c;所以这类排序算法叫作线性排序。 线性的原因&#xff1a;三个算法是非基于比较的排序算法&#xff0c;都不涉及元素之间的比较操作。 三种排序对排序的数据要求苛刻&am…