吃瓜教程-模型的评估与选择

  • 在训练集上的误差称为训练误差(training error)或经验误差(empirical error)。
  • 在测试集上的误差称为测试误差(test error)。
  • 学习器在所有新样本上的误差称为泛化误差(generalization error)。
  • 学习能力过强,以至于把训练样本所包含的不太一般的特性都学到了,称为:过拟合(overfitting)。
  • 学习能太差,训练样本的一般性质尚未学好,称为:欠拟合(underfitting)。

 训练集与测试集的划分方法

留出法

交叉验证法

自助法

性能度量

回归任务中采用了MSE作为评价函数

查准率/查全率/F1

“P-R曲线”正是描述查准/查全率变化的曲线,P-R曲线定义如下:根据学习器的预测结果(一般为一个实值或概率)对测试样本进行排序,将最可能是“正例”的样本排在前面,最不可能是“正例”的排在后面,按此顺序逐个把样本作为“正例”进行预测,每次计算出当前的P值和R值

F-Score

ROC与AUC

代价敏感错误率与代价曲线

代价曲线的绘制很简单:设ROC曲线上一点的坐标为(TPR,FPR) ,则可相应计算出FNR,然后在代价平面上绘制一条从(0,FPR) 到(1,FNR) 的线段,线段下的面积即表示了该条件下的期望总体代价

假设检验部分略

偏差与方差

在欠拟合时,偏差主导泛化误差,而训练到一定程度后,偏差越来越小,方差主导了泛化误差。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/159847.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

drawio简介以及下载安装

drawio简介以及下载安装 drawio是一款非常强大的开源在线的流程图编辑器,支持绘制各种形式的图表,提供了 Web端与客户端支持,同时也支持多种资源类型的导出。 访问网址:draw.io或者直接使用app.diagrams.net直接打开可以使用在线版…

PyTorch 深度学习之处理多维特征的输入Multiple Dimension Input(六)

1.Multiple Dimension Logistic Regression Model 1.1 Mini-Batch (N samples) 8D->1D 8D->2D 8D->6D 1.2 Neural Network 学习能力太好也不行(学习到的是数据集中的噪声),最好的是要泛化能力,超参数尝试 Example, Arti…

软件工程与计算总结(九)软件体系结构基础

目录 ​编辑 一.体系结构的发展 二.理解体系结构 1.定义 2.区分体系结构的抽象与实现 3.部件 4.连接件 5.配置 三.体系结构风格初步 1.主程序/子程序 2.面向对象式 3.分层 4.MVC 一.体系结构的发展 小规模编程的重点在于模块内部的程序结构非常依赖于程序设计语言…

仪酷LabVIEW OD实战(3)——Object Detection+onnx工具包快速实现yolo目标检测

‍‍🏡博客主页: virobotics(仪酷智能):LabVIEW深度学习、人工智能博主 🎄所属专栏:『LabVIEW深度学习工具包』『仪酷LabVIEW目标检测工具包实战』 📑上期文章:『仪酷LabVIEW OD实战(2)——Obje…

E047-论坛漏洞分析及利用-针对Wordpress论坛进行信息收集与漏洞扫描的探索

任务实施: E047-论坛漏洞分析及利用-针对Wordpress论坛进行信息收集与漏洞扫描的探索 任务环境说明: 服务器场景:p9_kali-6(用户名:root;密码:toor) 服务器场景操作系统:Kali Li…

MPNN 模型:GNN 传递规则的实现

首先,假如我们定义一个极简的传递规则 A是邻接矩阵,X是特征矩阵, 其物理意义就是 通过矩阵乘法操作,批量把图中的相邻节点汇聚到当前节点。 但是由于A的对角线都是 0.因此自身的节点特征会被过滤掉。 图神经网络的核心是 吸周围…

mysql中的几种排名函数

mysql中的排名函数 mysql里面的排名函数&#xff0c;涉及有以下几个&#xff1a; rank()、dense_rank()、row_number() 1、rank() 函数 RANK() OVER (PARTITION BY <expression>[{,<expression>...}]ORDER BY <expression> [ASC|DESC], [{,<expression…

MySQL有时候命中索引有时候又不命中

索引失效的情况 -----可能 索引主要看where 、group by 、order by 1.组合索引不遵循最佳左前缀法制。最佳左前缀法制&#xff1a;如果索引了多列&#xff0c;要遵循最左前缀法则&#xff0c;指的是查询从索引的最左前列开始并且不跳过索引中的列。如组合索引为A B C 只有ABC,A…

C# RestoreFormer 图像修复

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Imaging; using System.Windows.Forms;namespace 图像修复 {pu…

【SpringCloud-10】SCA-nacos

前言&#xff1a; 前面介绍的springcloud&#xff0c;可以看做第一代&#xff0c;称为&#xff1a;SCN&#xff08;spring cloud Netflix&#xff09;; 接下来介绍的是第二代&#xff1a;SCA&#xff08;spring cloud alibaba&#xff09;&#xff1b; SCA主要有以下组件&#…

Java|学习|异常

1.异常 1.1 异常 1.1.1 概述 异常&#xff1a;就是程序出现了不正常的情况。 Error&#xff1a;严重问题&#xff0c;不需要处理。 Exception&#xff1a;称为异常类&#xff0c;它表示程序本身可以处理的问题。 RuntimeException&#xff1a;在编译器不检查&#xff0c;出…

关于Skywalking Agent customize-enhance-trace对应用复杂参数类型取值

对于Skywalking Agent customize-enhance-trace 大家应该不陌生了&#xff0c;主要支持以非入侵的方式按用户自定义的Span跟踪对应的应用方法&#xff0c;并获取数据。 参考https://skywalking.apache.org/docs/skywalking-java/v9.0.0/en/setup/service-agent/java-agent/cust…

论文阅读:Rethinking Range View Representation for LiDAR Segmentation

来源ICCV2023 0、摘要 LiDAR分割对于自动驾驶感知至关重要。最近的趋势有利于基于点或体素的方法&#xff0c;因为它们通常产生比传统的距离视图表示更好的性能。在这项工作中&#xff0c;我们揭示了建立强大的距离视图模型的几个关键因素。我们观察到&#xff0c;“多对一”…

TCP/IP(九)TCP的连接管理(六)TIME_WAIT状态探究

一 TIME_WAIT探究 要明确TIME_WAIT状态在tcp四次挥手的阶段 ① 为什么 TIME_WAIT 等待的时间是 2MSL? 背景&#xff1a; 客户端在收到服务端第三次FIN挥手后,就会进入TIME_WAIT 状态,开启时长为2MSL的定时器1、MSL 是 Maximum Segment Lifetime 报文最大生存时间2、2MSL…

论文阅读之【Is GPT-4 a Good Data Analyst?(GPT-4是否是一位好的数据分析师)】

文章目录 论文阅读之【Is GPT-4 a Good Data Analyst?&#xff08;GPT-4是否是一位好的数据分析师&#xff09;】背景&#xff1a;数据分析师工作范围基于GPT-4的端到端数据分析框架将GPT-4作为数据分析师的框架的流程图 实验分析评估指标表1&#xff1a;GPT-4性能表现表2&…

跨境商城源码有哪些独特的功能和优势

1. 强大的跨境支付功能 跨境商城源码具备强大的跨境支付功能&#xff0c;支持多种支付方式&#xff0c;包括信用卡、支付宝、微信支付等。该功能遵循国际支付标准&#xff0c;能够确保支付过程的安全性和可靠性&#xff0c;为用户提供便捷的跨境购物体验。 2. 多语言和多货币支…

[GAMES101]透视投影变换矩阵中为什么需要改变z值

一、问题提出 在GAMES101-Lecture4 Transformation Matrices 一节中&#xff0c;闫老师介绍了正交投影和透视投影。 在讲透视投影变换矩阵 M p e r s p → o r t h o M_{persp→ortho} Mpersp→ortho​时&#xff0c;同学们对矩阵中的z分量是变化的还是不变的有很多争论。即下…

MySQL多表查询综合练习

1.创建student和score表 CREATE TABLE student ( id INT(10) NOT NULL UNIQUE PRIMARY KEY , name VARCHAR(20) NOT NULL , sex VARCHAR(4) , birth YEAR, department VARCHAR(20) , address VARCHAR(50) ); 创建score表。SQL代码如下&#xff1a; CREATE TABLE sc…

Postgresql关于EOH的使用注意

注意通常拿到的指针不是EOH头 EOH是一种扩展数据结构&#xff0c;之前有几篇博客讨论过了&#xff0c;最近在改相关代码加深了一些理解。 EOH目前支持ER_methods、EA_methods两套实现&#xff0c;分别是record类型展开和数组类型展开。 在内存中的样子大概是&#xff08;EA为…

Java基础20问(1-5)

1.Java面向对象和面试过程的区别&#xff1f; 面向过程是将一个问题拆解成几个步骤&#xff0c;依次实现每一个步骤&#xff0c;比如实现一个冒泡排序的算法&#xff0c;是为了解决某个非常具体的问题。 而面向对象也是将一个问题拆解成几个步骤&#xff0c;但是先不去实现&a…