python爬取boss直聘数据(selenium+xpath)

文章目录

  • 一、主要目标
  • 二、开发环境
  • 三、selenium安装和驱动下载
  • 四、主要思路
  • 五、代码展示和说明
    • 1、导入相关库
    • 2、启动浏览器
    • 3、搜索框定位
    • 创建csv文件
    • 招聘页面数据解析(XPATH)
    • 总代码
    • 效果展示
  • 六、总结

一、主要目标

以boss直聘为目标网站,主要目的是爬取下图中的所有信息,并将爬取到的数据进行持久化存储。(可以存储到数据库中或进行数据可视化分析用web网页进行展示,这里我就以csv形式存在了本地)

在这里插入图片描述

二、开发环境

python3.8
pycharm
Firefox

三、selenium安装和驱动下载

环境安装: pip install selenium

版本对照表(火狐的)
https://firefox-source-docs.mozilla.org/testing/geckodriver/Support.html

浏览器驱动下载
https://registry.npmmirror.com/binary.html?path=geckodriver/

火狐浏览器下载
https://ftp.mozilla.org/pub/firefox/releases/

四、主要思路

  1. 利用selenium打开模拟浏览器,访问boss直聘首页(绕过cookie反爬)
  2. 定位搜索按钮输入某职位,点击搜索
  3. 在搜索结果页面,解析出现的职位信息,并保存
  4. 获取多个页面,可以定位跳转至下一页的按钮(但是这个跳转我一直没成功,于是我就将请求url写成了动态的,直接发送一个新的url来代替跳转)

五、代码展示和说明

1、导入相关库

# 用来将爬取到的数据以csv保存到本地
import csv
from time import sleep
# 使用selenium绕过cookie反爬
from selenium import webdriver
from selenium.webdriver.firefox.service import Service
from selenium.webdriver.common.by import By
# 使用xpath进行页面数据解析
from lxml import etree

2、启动浏览器

(有界面)

# 传入浏览器的驱动
ser = Service('./geckodriver.exe')
# 实例化一个浏览器对象
bro = webdriver.Firefox(service=ser)
# 设置隐式等待 超时时间设置为20s
bro.implicitly_wait(20)
# 让浏览器发起一个指定url请求
bro.get(urls[0])

(无界面)

# 1. 初始化配置无可视化界面对象
options = webdriver.FirefoxOptions()
# 2. 无界面模式
options.add_argument('-headless')
options.add_argument('--disable-gpu')# 让selenium规避被检测到的风险
options.add_argument('excludeSwitches')# 传入浏览器的驱动
ser = Service('./geckodriver.exe')# 实例化一个浏览器对象
bro = webdriver.Firefox(service=ser, options=options)# 设置隐式等待 超时时间设置为20s
bro.implicitly_wait(20)# 让浏览器发起一个指定url请求
bro.get(urls[0])

3、搜索框定位

进入浏览器,按F12进入开发者模式
在这里插入图片描述
然后分析下图可知,搜索框和搜索按钮都有唯一的class值
在这里插入图片描述
然后输入搜索内容,并跳转,代码如下

# 定位搜索框 .ipt-search
search_tag = bro.find_element(By.CSS_SELECTOR, value='.ipt-search')
# 输入搜索内容
search_tag.send_keys("")# 定位搜索按钮    .代表的是当前标签下的class
btn = bro.find_element(By.CSS_SELECTOR, value='.btn-search')
# 点击搜索按钮
btn.click()

创建csv文件

一开始编码为utf-8,但在本地打开内容是乱码,然后改成utf-8_sig就ok了

# f = open("boos直聘.csv", "w", encoding="utf-8", newline="")
f = open("boos直聘.csv", "w", encoding="utf-8_sig", newline="")
csv.writer(f).writerow(["职位", "位置", "薪资", "联系人", "经验", "公司名", "类型", "职位技能", "福利", "详情页"])

招聘页面数据解析(XPATH)

通过分析可知,招聘数据全在ul标签下的li标签中
在这里插入图片描述
我们要获取的信息有这些,接下来就要进入li标签中,一个一个去分析
在这里插入图片描述
其中职位名称在span标签中,而span标签的class有唯一的值job-name
其它数据分析方式和这个相同
在这里插入图片描述
数据解析代码如下

def parse():# 临时存放获取到的信息jobList = []# 提取信息page_text = bro.page_source# 将从互联网上获取的源码数据加载到tree对象中tree = etree.HTML(page_text)job = tree.xpath('//div[@class="search-job-result"]/ul/li')for i in job:# 职位job_name = i.xpath(".//span[@class='job-name']/text()")[0]# 位置jobArea = i.xpath(".//span[@class='job-area']/text()")[0]# 联系人linkman_list = i.xpath(".//div[@class='info-public']//text()")linkman = "·".join(linkman_list)# 详情页urldetail_url = prefix + i.xpath(".//h3[@class='company-name']/a/@href")[0]# print(detail_url)# 薪资salary = i.xpath(".//span[@class='salary']/text()")[0]# 经验job_lable_list = i.xpath(".//ul[@class='tag-list']//text()")job_lables = " ".join(job_lable_list)# 公司名company = i.xpath(".//h3[@class='company-name']/a/text()")[0]# 公司类型和人数等companyScale_list = i.xpath(".//div[@class='company-info']/ul//text()")companyScale = " ".join(companyScale_list)# 职位技能skill_list = i.xpath("./div[2]/ul//text()")skills = " ".join(skill_list)# 福利 如有全勤奖补贴等try:job_desc = i.xpath(".//div[@class='info-desc']/text()")[0]# print(type(info_desc))except:job_desc = ""# print(type(info_desc))# print(job_name, jobArea, salary, linkman, salaryScale, name, componyScale, tags, info_desc)# 将数据写入csvcsv.writer(f).writerow([job_name, jobArea, salary, linkman, job_lables, company, companyScale, skills, job_desc, detail_url])# 将数据存入数组中jobList.append({"jobName": job_name,"jobArea": jobArea,"salary": salary,"linkman": linkman,"jobLables": job_lables,"company": company,"companyScale": companyScale,"skills": skills,"job_desc": job_desc,"detailUrl": detail_url,})return {"jobList": jobList}

总代码

import csv
from time import sleep
from selenium import webdriver
from selenium.webdriver.firefox.service import Service
from selenium.webdriver.common.by import By
from lxml import etree# 指定url
urls = ['https://www.zhipin.com/', 'https://www.zhipin.com/web/geek/job?query={}&page={}']
prefix = 'https://www.zhipin.com'# 1. 初始化配置无可视化界面对象
options = webdriver.FirefoxOptions()
# 2. 无界面模式
options.add_argument('-headless')
options.add_argument('--disable-gpu')# 让selenium规避被检测到的风险
options.add_argument('excludeSwitches')# 传入浏览器的驱动
ser = Service('./geckodriver.exe')# 实例化一个浏览器对象
bro = webdriver.Firefox(service=ser, options=options)
# bro = webdriver.Firefox(service=ser# 设置隐式等待 超时时间设置为20s
# bro.implicitly_wait(20)# 让浏览器发起一个指定url请求
bro.get(urls[0])sleep(6)# 定位搜索框 .ipt-search
search_tag = bro.find_element(By.CSS_SELECTOR, value='.ipt-search')
# 输入搜索内容
search_tag.send_keys("")# 定位搜索按钮    .代表的是当前标签下的class
btn = bro.find_element(By.CSS_SELECTOR, value='.btn-search')
# 点击搜索按钮
btn.click()
sleep(15)# f = open("boos直聘.csv", "w", encoding="utf-8", newline="")
f = open("boos直聘.csv", "w", encoding="utf-8_sig", newline="")
csv.writer(f).writerow(["职位", "位置", "薪资", "联系人", "经验", "公司名", "类型", "职位技能", "福利", "详情页"])def parse():# 临时存放获取到的信息jobList = []# 提取信息page_text = bro.page_source# 将从互联网上获取的源码数据加载到tree对象中tree = etree.HTML(page_text)job = tree.xpath('//div[@class="search-job-result"]/ul/li')for i in job:# 职位job_name = i.xpath(".//span[@class='job-name']/text()")[0]# 位置jobArea = i.xpath(".//span[@class='job-area']/text()")[0]# 联系人linkman_list = i.xpath(".//div[@class='info-public']//text()")linkman = "·".join(linkman_list)# 详情页urldetail_url = prefix + i.xpath(".//h3[@class='company-name']/a/@href")[0]# print(detail_url)# 薪资salary = i.xpath(".//span[@class='salary']/text()")[0]# 经验job_lable_list = i.xpath(".//ul[@class='tag-list']//text()")job_lables = " ".join(job_lable_list)# 公司名company = i.xpath(".//h3[@class='company-name']/a/text()")[0]# 公司类型和人数等companyScale_list = i.xpath(".//div[@class='company-info']/ul//text()")companyScale = " ".join(companyScale_list)# 职位技能skill_list = i.xpath("./div[2]/ul//text()")skills = " ".join(skill_list)# 福利 如有全勤奖补贴等try:job_desc = i.xpath(".//div[@class='info-desc']/text()")[0]# print(type(info_desc))except:job_desc = ""# print(type(info_desc))# print(job_name, jobArea, salary, linkman, salaryScale, name, componyScale, tags, info_desc)# 将数据写入csvcsv.writer(f).writerow([job_name, jobArea, salary, linkman, job_lables, company, companyScale, skills, job_desc, detail_url])# 将数据存入数组中jobList.append({"jobName": job_name,"jobArea": jobArea,"salary": salary,"linkman": linkman,"jobLables": job_lables,"company": company,"companyScale": companyScale,"skills": skills,"job_desc": job_desc,"detailUrl": detail_url,})return {"jobList": jobList}if __name__ == '__main__':# 访问第一页jobList = parse()query = ""# 访问剩下的九页for i in range(2, 11):print(f"第{i}页")url = urls[1].format(query, i)bro.get(url)sleep(15)jobList = parse()# 关闭浏览器bro.quit()

效果展示

在这里插入图片描述

六、总结

不知道是boss反爬做的太好,还是我个人太菜(哭~)
我个人倾向于第二种
这个爬虫还有很多很多的不足之处,比如在页面加载的时候,boss的页面会多次加载(这里我很是不理解,我明明只访问了一次,但是他能加载好多次),这就导致是不是ip就会被封…
再比如,那个下一页的点击按钮,一直点不了,不知有没有路过的大佬指点一二(呜呜呜~)
在这里插入图片描述

# 下一页标签定位 ui-icon-arrow-right
next_tag = bro.find_element(By.CSS_SELECTOR, value='.ui-icon-arrow-right')
# action = ActionChains(bro)
# # 点击指定的标签
# action.click(next_tag).perform()
# sleep(0.1)
# # 释放动作链
# action.release().perform()

总之boss的信息爬取,我还是无法做到完全自动化😭

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/163274.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

EV SSL数字证书贵吗

EVSSL证书通常适用于具有高需求的网站和企业,特别是涉及在线交易、金融服务、电子商务平台等需要建立用户信任的场景。大型企业、金融机构、电子商务平台等可以受益于使用EV证书来提升品牌形象和安全性。 申请EVSSL证书(Extended Validation SSL certifi…

Ubuntu:VS Code IDE安装ESP-IDF【保姆级】(草稿)

物联网开发学习笔记——目录索引 Visual Studio Code(简称“VS Code”)是Microsoft向开发者们提供的一款真正的跨平台编辑器。 参考: VS Code官网:Visual Studio Code - Code Editing. Redefined 乐鑫官网:ESP-IDF …

python:talib.BBANDS 画股价-布林线图

python 安装使用 TA_lib 安装主要在 http://www.lfd.uci.edu/~gohlke/pythonlibs/ 这个网站找到 TA_Lib-0.4.24-cp310-cp310-win_amd64.whl pip install /pypi/TA_Lib-0.4.24-cp310-cp310-win_amd64.whl 编写 talib_boll.py 如下 # -*- coding: utf-8 -*- import os impor…

c语言练习93:环形链表的约瑟夫问题

环形链表的约瑟夫问题 环形链表的约瑟夫问题_牛客题霸_牛客网 描述 编号为 1 到 n 的 n 个人围成一圈。从编号为 1 的人开始报数,报到 m 的人离开。 下一个人继续从 1 开始报数。 n-1 轮结束以后,只剩下一个人,问最后留下的这个人编号是…

使用IDEA2022.1创建Maven工程出现卡死问题

使用IDEA创建Maven工程出现卡死问题,这个是一个bug 这里是别人和官方提供这个bug,大家可以参考一下 话不多说,上教程 解决方案: 方案1:更新idea版本 方案2:关闭工程,再新建,看图

知识分享:如何制作一个电子名片二维码?

参加国际展会、寻找合作商、线下客户拜访、渠道开发、商务对接、行业交流大会……在这些场合中,商务名片都是必不可少的。随着二维码应用的流行,名片上使用二维码已经非常普遍了。你也可以在商务名片上使用一个自己设计的电子名片二维码,扫描…

微软Azure OpenAI支持数据微调啦!可打造专属ChatGPT

10月17日,微软在官网宣布,现在可以在Azure OpenAI公共预览版中对GPT-3.5-Turbo、Babbage-002 和Davinci-002模型进行数据微调。 使得开发人员通过自己的数据集,便能打造独一无二的ChatGPT。例如,通过海量医疗数据进行微调&#x…

微信小程序一键获取位置

需求 有个表单需要一键获取对应位置 并显示出来效果如下&#xff1a; 点击一键获取获取对应位置 显示在 picker 默认选中 前端 代码如下: <view class"box_7 {{ showChange1? change-style: }}"><view class"box_11"><view class"…

大鼠药代动力学(PK参数/ADME)+毒性 实验结果分析

在真实做实验的时候&#xff0c;出现了下面真实测试的一些参数&#xff0c;一起学习一下&#xff1a; 大鼠药代动力学&#xff1a; 为了进一步了解化合物 96 的药代动力学性质&#xff0c;我们选择化合物 500 进行 SD大鼠药代动力学评估。 经静脉注射和口服给药后观察大鼠血药…

互联网行业汇总

互联网行业汇总&#xff0c;全网最全&#xff01;选行业不愁 从事互联网选什么行业&#xff1f;这似乎是很多朋友的困惑。 所以这里给大家把互联网行业做个细致的汇总&#xff0c;每个行业列举几个典型的APP&#xff0c;简单拆解下各自的盈利模式&#xff0c;希望能给大家提供参…

【力扣1528】重新排列字符串

&#x1f451;专栏内容&#xff1a;力扣刷题⛪个人主页&#xff1a;子夜的星的主页&#x1f495;座右铭&#xff1a;前路未远&#xff0c;步履不停 目录 一、题目描述二、题目分析1、Java代码2、C代码 一、题目描述 给你一个字符串 s 和一个长度相同的整数数组 indices。 请你…

Linux块设备缓存Bcache使用

1 Bcache简介 Bcache是Linux内核块层cache&#xff0c;它使用SSD来作为HDD硬盘的cache&#xff0c;从而起到加速作用。Bcache内核模块仅在Linux 3.10及以上版本支持&#xff0c;因此使用Bcache&#xff0c;需要将内核升级到3.10及以上版本&#xff0c;并在内核配置项中打开Bca…

【学习笔记】RabbitMQ04:延迟队列的原理以及实现代码

参考资料 RabbitMQ官方网站RabbitMQ官方文档噼咔噼咔-动力节点教程 文章目录 七、延迟队列7.1 什么是延迟队列7.2 延迟队列的解决方案7.2.1 定时任务7.2.2 **被动取消**7.2.3 JDK的延迟队列7.2.3 采用消息中间件&#xff08;rabbitMQ7.2.3.1 适用专门优化后的死信队列实现延迟队…

攻防世界web篇-unserialize3

得出php代码残篇 将代码补全后再在线php运行工具中进行运行 在浏览器输入后得到下面的界面 这里需要将O:4:“xctf”:1:{s:4:“flag”;s:3:“111”;} 改为 O:4:“xctf”:2:{s:4:“flag”;s:3:“111”;}

单片机入门后该怎么学习进一步提升?

单片机入门后该怎么学习进一步提升&#xff1f; 可以将你目前会的单片机基础先整理一下&#xff0c;你看看运用这些基本的外设或者一些入门知识能做个什么东西&#xff0c;最近很多小伙伴找我&#xff0c;说想要一些单片机资料&#xff0c;然后我根据自己从业十年经验&#xff…

查询企业信息的四种方法

在工作中或者对于找工作的求职人来说&#xff0c;怎么查看企业的信息呢&#xff1f;可能很多人会想到各种查查类软件&#xff0c;但是这类软件需要会员或者付费才能查看&#xff0c;对于没有会员的人来说&#xff0c;有没有其他查询企业的方法呢&#xff1f;答案肯定是有的&…

Python 爬虫实战之爬淘宝商品并做数据分析

前言 是这样的&#xff0c;之前接了一个金主的单子&#xff0c;他想在淘宝开个小鱼零食的网店&#xff0c;想对目前这个市场上的商品做一些分析&#xff0c;本来手动去做统计和分析也是可以的&#xff0c;这些信息都是对外展示的&#xff0c;只是手动比较麻烦&#xff0c;所以…

IDC:到2027年,全球生成式AI支出将达到1430亿美元

全球著名信息调查咨询机构IDC在官网公布了一项调查&#xff0c;到2027年&#xff0c;全球生成式AI&#xff08;Generative AI&#xff0c;简称Gen AI&#xff09;支出将达到1430亿美元&#xff0c;5年复合年增长率为73.3%。 该支出包括&#xff1a;生成式AI的软件以及相关基础…

报错:AttributeError: module ‘tensorflow‘ has no attribute ‘flags‘

改成如下&#xff1a; 报错原因&#xff1a;tensorflow1.x与2.x版本问题不兼容

3D Web轻量化工具HOOPS Web Platform助力Rapid DCS快速上市碳估算产品!

总部位于英国的Rapid DCS提供全面的交钥匙解决方案和服务&#xff0c;帮助建筑环境领域的客户充分利用数字化的优势。 Rapid DCS技术总监James Hunter表示&#xff1a;“如今的建筑项目需要一套与20甚至10年前的建筑项目不同的功能。” “例如&#xff0c;虽然成本规划一直很重…