STM32F4XX之串口

一、标准串口(UART)介绍

1、通信协议相关概念

1.1同步通信和异步通信

(1)同步通信:两个器件之间共用一个时钟线,要发送的数据在时钟的作用下一位一位发送出去。

(2)异步通信:指两个器件之间没有时钟线连接,器件接受/发送数据时使用各自的时钟,以不同的时钟频率进行通信。

1.2串行与并行通信

(1)串行通信:只有一根数据线,各个数据位通过数据线按照顺序一位一位的传输。

优点:稳定性高、简单、成本低

缺点:速度慢

(2)并行通信:有多根数据线,各个数据位同时传输。

优点:速度快。

缺点:稳定性不高、设计复杂、成本高。(占用引脚资源多)

1.3单工、半双工、全双工通信

(1)单工:数据只能由设备A到设备B,不能从设备B到设备A,(任何时候只能是一个方向,如遥控器)。

(2)半双工:设备A发送数据给设备B或者设备B发送数据给设备A。(数据可以在两个方向上传输。同一时刻,数据只能在一个方向传输,传输方向可切换的单工通信;接收端和发送端,可以使用一个端口(扩展)。如对讲机)。

(3)全双工:设备A发送数据给设备B的同时,设备B也可以发送数据给设备A。(允许数据同时在两个方向上传输,发送接收互补影响,所以需要独立的接收端和发送端)。

2、标准串口(UART)概念及其作用

2.1概念:串口也称串行通信接口,是一种MCU与其他器件通信的通信协议。

2.2作用:主要用于芯片与芯片之间、模块与芯片之间、模块与模块之间按照这种通信协议进行数据交换。如:STM32F4XX 和 GSM ,WIFE.北斗.语音,5G模块等。

2.2.1标准UART的协议类型及拓扑接口(接口标准)

底层:接口规范

标准UART的协议类型:异步串行全双工。(没有时钟线,一条发送数据线,一条接收数据线)

RXD:数据接收管脚;R = receive接受

TXD:数据发送管脚;T = transmit发送

注意:地线在硬件上一定要接,否则数据不正常。

2.2.2标准UART的数据帧格式

数据帧格式:将要发送的真正的信息和其它通信必须的信号封装成一包数据,这一包数据包含以下几个内容。

标准UART中一帧数据:1位起始位+(5~8)数据位+1位校验位+(0.5~2)位停止位。

空闲电平:数据线不传输数据时的状态,该状态为高电平。

起始位:该状态为低电平,占用一个bit,代表通信开始。
数据位:真正传输的数据,占用5~8bit。
校验位:为了检测数据传输的正确与否。占用1bit。

(一般不用)奇偶校验位:奇校验:1000 1100  0  
偶校验:1110 0000  1
停止位:该状态为高电平,占用0.5~2bit,代表通信结束。

2.2.3标准串口速率控制
什么是波特率?波特率的作用是什么?
(1)波特率的作用和概念: 当接收和发送器件的时钟频率不一致时,为了让数据可以正确的收发,所以双方要规定好一个合适的频率进行通信,规定的这个频率称之为波特率,波特率又叫比特率。 
(2)波特率:单位时间内传输的二进制代码的有效位数,其常用单位为每秒比特数bit/s(bps== bit per second)。
(3)常用的波特率:115200、38400、9600,每秒能传输多少位数据。
总结:标准UART的四要素:波特率(通讯速率),数据位长度,校验位,停止位长度。

二、串口的概述

串口是模块是芯片内部的一个片内外设。

STM32F407单片机内部共有6个串口

1.USART介绍

名词解析:USART :Universal Synchronous/Asynchronous ReceiverTransmitters

U:通用的        S:同步        A:异步        R:接受        T:发送
通用同步异步收发器 (USART) 能够灵活地与外部设备进行全双工数据交换,满足外部设备对工业标准 NRZ 异步串行数据格式的要求。 

2.UART框图分析

2.1管脚部分

TX:发送数据管脚

RX:接收数据管脚

2.2数据发送/接收部分

 CPU定义一个8位或者9位的数据并写入到数据寄存器(DR)
1发送数据’A’: USART->DR= ’A’;

(cpu)读取接收数据寄存器(DR)里的值。(人为)
2接受数据:int a= USART->DR;

串口通讯流程

2.3波特率设置

USART 通过小数波特率发生器提供了多种波特率。

2.4控制部分及寄存器分析

三、UART相关寄存器介绍

状态寄存器 (USART_SR)

位 7 TXE:发送数据寄存器为空 (Transmit data register empty) 
当 TDR 寄存器的内容已传输到移位寄存器时,该位由硬件置 1。
如果 USART_CR1 寄存器 中 TXEIE 位 = 1,则会生成中断。通过对 USART_DR 寄存器执行写入操作将该位清零。
 0:数据未传输到移位寄存器 
 1:数据传输到移位寄存器 
位 6 TC:发送完成 (Transmission complete) 
如果已完成对包含数据的帧的发送并且 TXE 置 1,则该位由硬件置 1。如果 USART_CR1 寄存器中 TCIE = 1,则会生成中断。该位由软件序列清零(读取 USART_SR 寄存器,然后写入 USART_DR 寄存器)。TC 位也可以通过向该位写入‘0’来清零。建议仅在多缓冲区通信时使用此清零序列。 
 0:传送未完成
 1:传送已完成 
位 5 RXNE:读取数据寄存器不为空 (Read data register not empty) 
当 RDR 移位寄存器的内容已传输到 USART_DR 寄存器时,该位由硬件置 1。如果 USART_CR1 寄存器中 RXNEIE = 1,则会生成中断。通过对 USART_DR 寄存器执行读入操作将该位清零。RXNE 标志也可以通过向该位写入零来清零。建议仅在多缓冲区通信时使用此清零序列。
0:未接收到数据 
1:已准备好读取接收到的数据 
位 4 IDLE:检测到空闲线路 (IDLE line detected) 
检测到空闲线路时,该位由硬件置 1。如果 USART_CR1 寄存器中 IDLEIE = 1,则会生成中 断。该位由软件序列清零(读入 USART_SR 寄存器,然后读入 USART_DR 寄存器)。 
0:未检测到空闲线路
1:检测到空闲线路 
注意:直到 RXNE 位本身已置 1 时(即,当出现新的空闲线路时)IDLE 位才会被再次置 1。 

2.数据寄存器 (USART_DR)
位 8:0 DR[8:0]:数据值 
    包含接收到数据字符或已发送的数据字符,具体取决于所执行的操作是“读取”操作还是“写入”操作。
因为数据寄存器包含两个寄存器,一个用于发送 (TDR),一个用于接收 (RDR),因此它具有双重功能(读和写)。
3.波特率寄存器 (USART_BRR)

位 31:16 保留,必须保持复位值 
    位 15:4 DIV_Mantissa[11:0]:USARTDIV 的尾数 
        这 12 个位用于定义 USART 除数 (USARTDIV) 的尾数 
    位 3:0 DIV_Fraction[3:0]:USARTDIV 的小数 
    这 4 个位用于定义 USART 除数 (USARTDIV) 的小数。当 OVER8 = 1 时,不考虑 DIV_Fraction3 
位,且必须将该位保持清零。
注意: 如果 TE 或 RE 位分别被禁止,则波特计数器会停止计数。
4.控制寄存器 1 (USART_CR1)

位 15 OVER8:过采样模式 (Oversampling mode) 
0:16 倍过采样 
1:8 倍过采样
//过采样就是为得到一个信号真实情况,需要用一个比这个信号频率高的采样信号去检测,也就是将串口接收的速度提高了,16倍就是采样速度提高16倍,即会采样更多 的点来确定数据的正确性但为了得到越高频率采样信号越也困难,运算和功耗等等也会增加,所以一般选择合适就好。
位 13 UE:USART 使能 (USART enable) 
该位清零后,USART 预分频器和输出将停止,并会结束当前字节传输以降低功耗。此位由软件置 1 和清零。 
0:禁止 USART 预分频器和输出 
1:使能 USART
注意:串口全部配置好,最后打开此位
位 12 M:字长 (Word length)
该位决定了字长。该位由软件置 1 或清零。 
0:1 起始位,8 数据位,n 停止位 
1:1 起始位,9 数据位,n 停止位
位 3 TE:发送器使能 (Transmitter enable) 
该位使能发送器。该位由软件置 1 和清零。 
0:禁止发送器 
1:使能发送器
位 2 RE:接收器使能 (Receiver enable) 
该位使能接收器。该位由软件置 1 和清零。 
0:禁止接收器 
1:使能接收器并开始搜索起始位
5.控制寄存器 2 (USART_CR2)

位 13:12 STOP:停止位 (STOP bit) 
这些位用于编程停止位。 
00:1 个停止位 
01:0.5 个停止位 
10:2 个停止位 
11:1.5 个停止位

6.外设时钟使能寄存器
USART是学习STM32F407ZGT6的第一个外设,这个外设如果要正常工作需要开启相应的时钟(打开开关)。USART外设接在哪条总线上。《STM32F407ZGT6数据手册》第二章节芯片框架中有。开启RCC相关寄存器配置。
(1).RCC APB1 外设时钟使能寄存器 (RCC_APB1ENR)

位 20 UART5EN:UART5 时钟使能 (UART5 clock enable) 
 由软件置 1 和清零。 
 0:禁止 UART5 时钟 
 1:使能 UART5 时钟 
 位 19 UART4EN:UART4 时钟使能 (UART4 clock enable) 
 由软件置 1 和清零。 
 0:禁止 UART4 时钟 
 1:使能 UART4 时钟 
 位 18 USART3EN:USART3 时钟使能 (USART3 clock enable) 
 由软件置 1 和清零。 
 0:禁止 USART3 时钟 
 1:使能 USART3 时钟 
 位 17 USART2EN:USART2 时钟使能 (USART2 clock enable) 
 由软件置 1 和清零。 
 0:禁止 USART2 时钟 
 1:使能 USART2 时钟
 (2)RCC APB2 外设时钟使能寄存器 (RCC_APB2ENR)
位 5 USART6EN:USART6 时钟使能 (USART6 clock enable)
 由软件置 1 和清零。 
0:禁止 USART6 时钟 
1:使能 USART6 时钟位 
4 USART1EN:USART1 时钟使能 (USART1 clock enable)
 由软件置 1 和清零。 
0:禁止 USART1 时钟 
1:使能 USART1 时钟
四、硬件分析

五、软件分析

 配置GPIO口
1. 打开GPIOA的时钟
2. 配置PA9和PA10为复用模式
3. 推挽类型
4. 不需要上下拉
5. 速度2M
6. 复用到哪里?
配置USART
1. 打开USART1外设时钟
2. 配置CR1寄存器(16倍过采样,8位字长,接收器和发送器使能,无奇偶校验)
3. 配置停止位(CR2)
4. 配置波特率(BRR)
5. 使能USART1
6. 发送数据出去(DR)
 

#include "usart1.h"/************************************
函数功能:USART1初始化
函数形参:u32 baud -- 波特率
函数返回值:void
函数说明:PA9 -- 复用到USART1_TXPA10 -- 复用到USART1_RX
作者:
日期:
************************************/
void Usart1_Init(u32 baud)
{float USARTDIV = 0;u16 DIV_Man = 0;u16 DIV_Fra = 0;//	一.配置GPIO口//1.打开GPIOA的时钟RCC->AHB1ENR |= 0X1 << 0;//2.配置PA9和PA10为复用模式GPIOA->MODER &= ~(0XF << 9 *2);GPIOA->MODER |= 0XA << 9*2;//3.复用到哪里?往复用高位寄存器的9号和10号管脚写7GPIOA->AFR[1] &= ~(0XFF << 4);GPIOA->AFR[1] |= (0X77 << 4);//	二.配置USART//1.打开USART1外设时钟RCC->APB2ENR |= 0X1 << 4;//2.配置CR1寄存器USART1->CR1 = 0;/*16倍过采样1 起始位, 8 数据位, n 停止位无奇偶校验*/USART1->CR1 |= 0X3 << 2;//接收器和发送器都使能了//3.配置1个停止位(CR2)USART1->CR2 &= ~(0X3 << 12);//4.配置波特率(BRR)USARTDIV = FPCLK / baud / 16;DIV_Man = USARTDIV;DIV_Fra = (USARTDIV - DIV_Man) *16;USART1->BRR = DIV_Man << 4 | DIV_Fra;//5.使能USART1USART1->CR1 |= 0X1 << 13;}/************************************
函数功能:使用USART发送字符串
函数形参:u8 *str
函数返回值:void
函数说明:可以通过USART1的DR寄存器发送数据到电脑上
作者:
日期:
************************************/
void Send_String(u8 *str)
{while(*str != 0){if(USART1->SR & (0X1 << 7)){USART1->DR = *str;str++;//只有成功发出去才进行偏移}}
}RECEVICE rec_str = {0};
/************************************
函数功能:接受一个字符串
函数形参:void
函数返回值:void
函数说明:要有一个接收电脑传过来数据的数组当前数组的长度有一个接收完成的标志位利用一个特定的字符来判断什么时候接受完数据
作者:
日期:
************************************/
void Receive_String(void)
{if(USART1->SR & (0X1 << 5))//判断什么时候接受到数据{if(USART1->DR != '\n'){rec_str.rec_buff[rec_str.len++] = USART1->DR;}else{rec_str.rec_buff[rec_str.len++] = USART1->DR;rec_str.rec_buff[rec_str.len] = '\0';rec_str.len = 0;//让下一次存储的字符串又从0号元素下标开始rec_str.flag = 1;//接收完成标志位可以让别人知道接收完整个字符串}	}	
}//printf支持
#pragma import(__use_no_semihosting_swi) //取消半主机状态struct __FILE { int handle; /* Add whatever you need here */ };
FILE __stdout;int fputc(int ch, FILE *f) {while((USART1->SR &(0X01<<7))==0);USART1->DR=ch;return (ch);
}
int ferror(FILE *f) {/* Your implementation of ferror */return EOF;
}void _ttywrch(int ch) {while((USART1->SR &(0X01<<7))==0);USART1->DR=ch;
}void _sys_exit(int return_code) {
label:  goto label;  /* endless loop */
}
#ifndef __USART_H_
#define __USART_H_#include "stm32f4xx.h"
#include "io_bit.h"
#include "stdio.h"#define FPCLK 84000000
#define BUFFSIZE 256typedef struct{u8 rec_buff[BUFFSIZE];//定义一个接收数据的数组u8 len; //当前接收到的数据的长度u8 flag;//表示当前接收到的数据已经是一个字符串的形式了
}RECEVICE;
extern RECEVICE rec_str;void Usart1_Init(u32 baud);
void Send_String(u8 *str);
void Receive_String(void);
#endif

int main(void)
{Usart1_Init(9600);printf("111");while(1){Receive_String();//不断的接收数据if(rec_str.flag == 1){rec_str.flag = 0;//首先把标志位清零printf("接收到的字符串:%s\r\n",rec_str.rec_buff);memset(rec_str.rec_buff,0,sizeof(rec_str.rec_buff));}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/167780.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++入门——引用|内联函数|auto关键字|基于范围的for循环|指针空值

前言 C入门专栏是为了补充C的不足&#xff0c;并为后面学习类和对象打基础。在前面我们已经讲解了命名空间、输入输出、缺省参数、重载函数等&#xff0c;今天我们将完结C的入门。 下面开始我们的学习吧&#xff01; 一、引用 1、引用是什么呢&#xff1f;为什么C添加了引用&a…

kali安装nodejs、npm失败

更新apt-get再安装&#xff0c;更新时间比较久&#xff0c;看网速&#xff0c;中间有一些确认步骤 22 apt-get update23 apt-get upgrade24 apt-get install nodejs25 node26 npm27 apt-get install npm

第十届山东省大学生网络安全技能大赛【神秘的base】【小试牛刀】

神秘的base 题目描述 EvAzEwo6E9RO4qSAHq42E9KvEv5zHDt34GtdHGJaHD7NHG42bwd神奇密码&#xff1a; xbQTZqjN8ERuwlzVfUIrPkeHd******LK697o2pSsGDncgm3CBh/Xy1MF4JAWta解题思路 这个题&#xff0c;上午一直零解&#xff0c;后来放出了hint&#xff0c;提示了base64换表。 这…

新零售系统主要功能有哪些?新零售系统开发公司推荐

新零售系统是一套全面的数字化解决方案&#xff0c;旨在帮助实体零售店提升运营效率、优化用户体验并实现持续增长。以下是新零售系统的主要功能&#xff1a; l 用户画像&#xff1a;系统通过收集和分析顾客的行为、偏好、购买历史等数据&#xff0c;构建出完整的用户画像。这…

2023.10.19 关于设计模式 —— 单例模式

目录 引言 单例模式 饿汉模式 懒汉模式 懒汉模式线程安全问题 分析原因 引言 设计模式为编写代码的 约定 和 规范 阅读下面文章前建议点击下方链接明白 对象 和 类对象 对象和类对象 单例模式 单个实例&#xff08;对象&#xff09;在某些场景中有特定的类&#xff0c;…

XPS就是分一下峰没你想的那么简单!-科学指南针

还记得前一段时间的一篇刷屏的经典文章吗! 林雪平大学(Linkping University)的Grzegorz Greczynski和Lars Hultman二人发表观点性文章&#xff0c;对诺奖得主K. Siegbahn推荐的XPS校准方法可能存在的问题进行了阐述与批评&#xff0c;并提出建议。文章原标题为“Compromising S…

程序员的金饭碗在哪里?这几个网站建议收藏!帮助你一步登天

俗话说的好&#xff0c;一个趁手的工具抵过诸葛亮。尤其是在程序员这个领域&#xff0c;不仅是一个非常和科技挂钩的领域&#xff0c;而且更新速度非常的迅速。 连java python都在更新&#xff0c;手头上写码的工具却还是老三样怎可行&#xff1f;这就需要我们跟上时代的脚步&…

统信操作系统UOS上安装arm64版nginx

原文链接&#xff1a;统信操作系统UOS上安装arm64版nginx hello&#xff0c;大家好啊&#xff0c;今天给大家带来一篇在统信桌面操作系统UOS上安装arm64版nginx的文章&#xff0c;本篇文章主要是给大家提供一种下载离线nginx软件包的方法&#xff0c;拿到软件包可以去不能链接互…

众和策略:华为汽车概念活跃,圣龙股份斩获12板,华峰超纤涨10%

华为轿车概念23日盘中再度生动&#xff0c;到发稿&#xff0c;华峰超纤涨超10%&#xff0c;佛山照明、圣龙股份、隆基机械、银宝山新等涨停&#xff0c;赛力斯涨近6%。 值得注意的是&#xff0c;圣龙股份已接连12个交易日涨停。 昨日晚间&#xff0c;圣龙股份宣布前三季度成果…

contenteditable实现文本内容确认提示

功能需求&#xff1a; 列表进行批量查询&#xff0c;需要对输入的值做提交校验&#xff0c;分三种情况&#xff1a; 若部分字符串有误&#xff0c;部分字符串需要变更字体颜色做提示&#xff0c;再次点击确认则对部分正确数据执行批量查询 若全部数据有误则变更字体颜色做提示&…

win7录屏软件哪个好用?盘点3款实用软件

在当今科技迅猛发展的时代&#xff0c;录屏已经成为了教育、演示和内容创作的重要工具。对于使用windows 7操作系统的用户来说&#xff0c;选择合适的录屏软件至关重要。可是win7录屏软件哪个好用呢&#xff1f;在本文中&#xff0c;我们将介绍3款常用的win7录屏软件。通过比较…

鸿蒙状态栏设置

鸿蒙状态栏设置 基于鸿蒙 ArkTS API9&#xff0c;设置状态栏颜色&#xff0c;隐藏显示状态栏。 API参考文档 参考文档 新建项目打开之后发现状态栏是黑色的&#xff0c;页面颜色设置完了也不能影响状态栏颜色&#xff0c;如果是浅色背景&#xff0c;上边有个黑色的头&#…

忆联SR-IOV解决方案:助力云数据中心节能提效,向“绿”而行

随着AI时代的到来&#xff0c;云数据中心如何实现节能提效正成为热门话题。其中&#xff0c;SR-IOV技术凭借灵活度高以及可节约虚拟化业务算力等优势&#xff0c;是打造绿色低碳云数据中心的重要解决方案之一。 一、什么是SR-IOV 技术 SR-IOV 是由国际组织 PCI-SIG 组织定义的…

65%更小的APK和70%更少的内存:如何优化我的Android App的内存

65%更小的APK和70%更少的内存&#xff1a;如何优化我的Android App的内存 (Note: This is a translation of the provided title) 为什么应用程序内存很重要&#xff1f; 使用最少的内存的高效应用程序可以提升性能&#xff0c;节省设备资源并延长电池寿命。它们提供流畅的用…

同为科技(TOWE)机架PDU产品在IDC数据中心机房建设中的应用

当今社会互联网发展迅速&#xff0c; 随着带宽需求的提升&#xff0c; 网络的保密性、安全性的要求就越来越迫切。PDU(Power Distribution Unit) 是 PDU具备电源分配和管理功能的电源分配管理器。PDU电源插座是多有设备运行的第一道也是最为密切的部件&#xff0c; PDU的好坏直…

html内连框架

src:引用页面地址 name&#xff1a;框架标识名称 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title> </head> <body> <!--iframe src&#xff1a;地址 w-h&#xff…

电商行业常见信息化工具及电商API接口一体化解决方案

主流的电商行业随着市场趋势发展&#xff0c;企业管理需求也日渐增多&#xff0c;不同的业务管理又有不同的系统支撑&#xff0c;业务增长的同时&#xff0c;数据的交互、管理的难点也在频频而出&#xff0c;那么电商企业如何实现信息一体化&#xff1f;如何解决目前存在的多系…

JVM 基础篇:类加载器

一.了解JVM 1.1什么是JVM JVM是Java Virtual Machine&#xff08;Java虚拟机&#xff09;的缩写&#xff0c;是一个虚构出来的计算机&#xff0c;是通过在实际的计算机上仿真模拟计算机功能来实现的&#xff0c;JVM屏蔽了与具体操作系统平台相关的信息&#xff0c;Java程序只需…

【React】高频面试题

1. 简述下 React 的事件代理机制&#xff1f; React使用了一种称为“事件代理”&#xff08;Event Delegation&#xff09;的机制来处理事件。事件代理是指将事件处理程序绑定到组件的父级元素上&#xff0c;然后在需要处理事件的子元素上触发事件时&#xff0c;事件将被委托给…

Python —— hou.NetworkItem class

在一个network内&#xff0c;所有可见元素的基类&#xff1b; 此类没有方法&#xff0c;仅作为 hou.NetworkMovabelItem、hou.NodeConnection 基类存在&#xff0c;这两个子类在网络编辑器内均是可见的&#xff0c;是没有真正有意义的基类的&#xff1b;通过提供一个公共的基类…