2015年亚太杯APMCM数学建模大赛A题海上丝绸之路发展战略的影响求解全过程文档及程序

2015年亚太杯APMCM数学建模大赛

A题 海上丝绸之路发展战略的影响

原题再现

  一带一路不是实体或机制,而是合作与发展的理念和主张。凭借现有有效的区域合作平台,依托中国与有关国家现有的双边和多边机制,利用古丝绸之路的历史象征,高举和平发展旗帜,主动发展与沿线国家的经济伙伴关系,打造利益共同体,政治互信、经济融合和文化包容的命运和责任。

  请查阅相关资料,分析21世纪海上丝绸之路提出的历史背景;请选择一个视角和一个行业来分析相关的经济指标,并建立一个数学模型来研究海上丝绸之路发展战略对中国或其他国家的短期影响。

整体求解过程概述(摘要)

  本文主要研究海上丝绸之路发展战略对中国-东盟工业原料进出口贸易的影响,并针对不同问题建立了合理的模型:贸易引力模型、层次分析法、灰色预测模型、线性拟合等方法。
  问题一:首先,我们分析了21世纪丝绸之路的历史背景,并利用贸易引力模型研究了中国与东南亚国家对提高经济产出、投资等的影响,并利用MATLAB通过数据拟合的方法绘制出相应的曲线,得出在21世纪海上丝绸之路的前十年,中国与东南亚国家的经济交流有了质的飞跃的结论。
  接下来,我们利用了Tinbergen和Poyhonen提出的贸易引力模型。实证结果表明,随着经济的快速增长,东盟对中国的投资不断增加,中国作为东盟产品供应国的市场地位不断上升,21世纪实施海上丝绸战略将继续开拓中国与东盟的贸易市场。
  针对问题二:本文对海上丝绸之路发展战略对中国-东盟工业原料进出口的影响进行了较为深入的研究。影响的定义是,如果不是2013年提出的海上丝绸之路和2013年提出中国-东盟工业原料进出口贸易发展做比较,然后探讨了21世纪海上丝绸之路战略中工业原材料的相关指标(矿物燃料、润滑油及相关材料、纺织制品、橡胶制品、矿产品及杂品)的进出口三大指标的权重。
  通过相关文献,我们发现了一些数据,因为数据越来越复杂,所以我们首先采用线性拟合的方法对中国-东盟工业原料行业进出口量进行拟合定量分析,但该方法过于理想,预测结果没有达到我们的预期,为了预测可靠性,我们充分利用了灰色预测。首先,我们使用2005-2011年的真实数据来预测2012年的数据,然后使用2005-2012年的实际数据来预测2013年的数据等等。
  最后,运用层次分析法的1-9标度法,结果表明,2013-2014年实际数据中工业原材料出口贸易额最大,得出21世纪海上丝绸之路战略的实施对中国-东盟工业原材料的出口有积极影响的结论。

模型假设:

  (1) 现在假设文献中的信息来源是真实可靠的;
  (2) 每年统计数据的变化是由中国-东盟区域经济直接或间接引起的;
  (3) 在规定的年份内,统计数据不受其他具体事件的影响;
  (4) 假设政策变化所带来的滞后影响可以忽略不计。

问题分析:

  历史背景
  自秦汉海上丝绸之路建立以来,一直是东西方经济文化交流的重要桥梁。东南亚地区是海上丝绸之路的重要组成部分。中国站在同东盟建立战略伙伴关系的新的历史起点上,展望第十个年头。中国-东盟双边贸易在21世纪初的十年里迅速发展,经贸交流日益频繁,合作不断深化,国际社会通常称之为黄金时代或黄金十年。为了进一步深化中国与东盟的合作,提出了21世纪的海上丝绸之路。

  国际背景
  进入新世纪后,特别是2008年全球金融危机后,中国在全球经济中的作用开始凸显,政治地位显著提高,被认为是下一个超级大国。因此,美国在建立“两个集团”(G2)或中美洲的愿望失败后,转向实施“重返亚洲”或“重返亚洲(支点)”,并于2013年调整为“亚太再平衡”。

  国内背景
  1产能过剩,外汇资产过剩
  2我国油气资源、矿产资源对外依存度较高;
  3中国的工业和基础设施都集中在沿海地区,如果遇到外部罢工,很容易失去核心设施
  4中国边境地区总体形势处于历史最好时期,周边国家与中国加强合作的意愿普遍增强。

  问题分析及处理方法
  问题一分析
  分析2013年中国提出21世纪海上丝绸之路的原因,首先要了解21世纪海上丝路的历史背景。一项重大战略的提出肯定会考虑到国家发展的方方面面,因为获取相关数据的数量大、难度大,而且难度越来越大。因此,我们决定从东南亚国家(东盟)21世纪海上丝绸之路中找出与之密切相关的相关数据,在分析中国与东南亚国家“黄金十年”贸易的基础上,引入贸易引力模型,研究是否加强与周边国家的经济联系对中国经济的影响。

  问题二分析
  根据课题要求,21世纪海上丝绸之路对许多行业都有一定的影响,我们考虑到为了计算结果的误差、数据的收集和处理的方便,我们选择了21世纪海上丝路、中国-东盟工业原料进出口情况,因为该行业较少受到国家政策等自然因素的影响。研究21世纪海上丝绸之路的影响。首先,我们要预测中国—东盟工业原材料进出口的情况和没有21世纪海上丝绸之路的情况。数据预测的方法包括线性拟合、回归分析、时间序列预测、灰色系统预测等。我们选择线性拟合的方法,发现误差很大。对于相关数据较少的问题,即样本小、数据不规则的特点,灰色系统预测方法是最合适的。我们选取了一些具有代表性的工业原材料指标(1。矿物燃料、润滑剂和相关材料。2纺织制品、橡胶制品、矿产品及其制品。3.杂产品)。

  问题三分析
  问题三要求我们确定21世纪海上丝绸之路对中国-东盟工业原料出口的各种具体产品的影响。由于工业原材料出口数据的影响不易找到,因此本文只选取了三个较为理想的指标,即利用层次分析法(AHP)求解问题的模型,根据AHP1-9标准方法的具体乘积成对比较矩阵,接下来我们灵活地应用MATLAB计算了权向量的权重,并通过一致性检验,最终得出21世纪海上丝绸之路在短期内对中国-东盟工业原料出口有积极影响的结论。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
% The export of Mineral fuels, lubricants and related materials of China-ASEAN
Year=[2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015];
Yuanliao=[176.22,177.7,199.51,317.73,203.74,266.73,259.8,260.8,322.76,356.8,390.3];
Year1=2005:2015;
Year2=2005:2020;
[P2,S2]=polyfit(Year,Yuanliao,2)
Yuanliao1=polyval(P2,Year1);
Yuanliao2=polyval(P2,Year2);
plot(Year,Yuanliao, '-*',Year2,Yuanliao2, '-X',Year1,Yuanliao1);
legend('true data','predicted data')
xlabel('year');ylabel(' volume of trade(million dollars)')
P2 =1.0e+06 *0.0000 -0.0041 4.0688
S2 = R: [3x3 double]df: 8normr: 113.4910
% The export of Textile products, rubber products, mining products and their products of 
China-ASEAN
Year=[2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015];
Qingfang=[ 1291.21,1748.16,2198.77,2623.91,2397.16,2491.08,2604.8,2746.9,2913.5,3200.12,3365
.21];
Year1=2005:2015;
Year2=2005:2020;
[P2,S2]=polyfit(Year,Qingfang,2)
Qingfang1=polyval(P2,Year1);
Qingfang2=polyval(P2,Year2);
plot(Year,Qingfang, '-*',Year2,Qingfang2, '-X',Year1,Qingfang1);
legend('true data','predicted data')
xlabel('year');ylabel(' volume of trade(million dollars)')
P2 =1.0e+07 *-0.0000 0.0036 -3.6737
S2 = R: [3x3 double]df: 8
normr: 591.4941
% The export of Miscellaneous manufactured articles of China-ASEAN
Year=[2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015];
Zaxiang=[ 1941.83,2380.14,2968.44,3359.59,3452.47,3776.52,4153,4357,5032.6,5876,6758];
Year1=2005:2015;
Year2=2005:2020;
[P2,S2]=polyfit(Year,Zaxiang,2)
Zaxiang1=polyval(P2,Year1);
Zaxiang2=polyval(P2,Year2);
plot(Year,Zaxiang, '-*',Year2,Zaxiang2, '-X',Year1,Zaxiang1);
legend('true data','predicted data')
xlabel('year');ylabel(' volume of trade(million dollars)')
P2 =
1.0e+07 *0.0000 -0.0091 9.1057
S2 = R: [3x3 double]df: 8
normr: 736.0580
% The import of Mineral fuels, lubricants and related materials of China-ASEAN
Year=[2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015];
Yuanliao=[ 43.29,43.56,44.17,45.7,44.8,43.56,43.54,42.32,42.14,40.36,39.87];
Year1=2005:2015;
Year2=2005:2020;
[P2,S2]=polyfit(Year,Yuanliao,2)
Yuanliao1=polyval(P2,Year1);
Yuanliao2=polyval(P2,Year2);
plot(Year,Yuanliao, '-*',Year2,Yuanliao2, '-X',Year1,Yuanliao1);
legend('true data','predicted data')
xlabel('year');ylabel(' volume of trade(million dollars)')
P2 =1.0e+05 *-0.0000 0.0044 -4.4257
S2 = R: [3x3 double]df: 8normr: 1.7082
% The import of Textile products, rubber products, mining products and their products of 
China-ASEAN
Year=[2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015];
Qingfang=[ 15.84,14.38,14.43,14.91,14.86,14.74,14.90,15.01,14.97,14.76,14.43];
Year1=2005:2015;
Year2=2005:2020;
[P2,S2]=polyfit(Year,Qingfang,2)
Qingfang1=polyval(P2,Year1);
Qingfang2=polyval(P2,Year2);
plot(Year,Qingfang, '-*',Year2,Qingfang2, '-X',Year1,Qingfang1);
legend('true data','predicted data')
xlabel('year');ylabel(' volume of trade(million dollars)')
P2 =1.0e+04 *0.0000 -0.0022 2.2354
S2 = R: [3x3 double]df: 8
normr: 1.2126
% The import of Miscellaneous manufactured articles of China-ASEAN
Year=[2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015];
Zaxiang=[ 11.88,11.8,12.28,12.38,12.08,12.36,12.43,12.50,13.05,13.24,13.73];
Year1=2005:2015;
Year2=2005:2020;
[P2,S2]=polyfit(Year,Zaxiang,2)
Zaxiang1=polyval(P2,Year1);
Zaxiang2=polyval(P2,Year2);
plot(Year,Zaxiang, '-*',Year2,Zaxiang2, '-X',Year1,Zaxiang1);
legend('true data','predicted data')
xlabel('year');ylabel(' volume of trade(million dollars)')
P2 =1.0e+04 *0.0000 -0.0073 7.3094
S2 = R: [3x3 double]df: 8
normr: 0.5449
%Gray Forecast Model
function[X,c,error1,error2]=huiseyuce(X0,k)
format long;
n=length(X0);
X1=[];
X1(1)=X0(1);
for i=2:nX1(i)=X1(i-1)+X0(i);
end
for i=1:n-1B(i,1)=-0.5*(X1(i)+X1(i+1));B(i,2)=1;Y(i)=X0(i+1);
end
alpha=(B'*B)^(-1)*B'*Y';
a=alpha(1,1);
b=alpha(2,1);
d=b/a;
c=X1(1)-d;
X2(1)=X0(1);
X(1)=X0(1);
for i=1:n-1X2(i+1)=c*exp(-a*i)+d;X(i+1)=X2(i+1)-X2(i);
end
for i=(n+1):(n+k)X2(i)=c*exp(-a*(i-1))+d;X(i)=X2(i)-X2(i-1);
end
for i=1:nerror(i)=X(i)-X0(i);error1(i)=abs(error(i));error2(i)=error1(i)/X0(i);
end
c=std(error1)/std(X0);
% The export of Mineral fuels, lubricants and related materials of China-ASEAN
>> k=5;
>> X0=[176.22,177.7,199.51,317.73,203.74,266.73,259.8];
>> [X,c,error1,error2]=huiseyuce(X0,k)
X =1.0e+02 *Columns 1 through 41.762200000000000 2.053884853941839 2.173184387315751 2.299413412689146Columns 5 through 82.432974428361995 2.574293311675829 2.723820676981195 2.882033312482381Columns 9 through 123.049435700540962 3.226561626286084 3.413975879660284 3.612276056328728
c =0.549440807340400
error1 =Columns 1 through 40 27.688485394183857 17.808438731575052 87.788658731085434Columns 5 through 739.557442836199471 9.300668832417159 12.582067698119488
error2 =Columns 1 through 40 0.155815899798446 0.089260882820786 0.276299558527950Columns 5 through 70.194156487858052 0.034869226680228 0.048429821778751
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/171796.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法训练营第三天 | 203.移除链表元素、707.设计链表 、206.反转链表

关于链表我们应该了解什么: 代码随想录 在实际开发中,遇到指针我们要做好防御性编程。 问题( 一 ) 题目描述 : 给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点…

【LeetCode:2558. 从数量最多的堆取走礼物 | 大根堆】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

LaTeX:在标题section中添加脚注footnote

命令讲解 先导包: \usepackage{footmisc} 设原标题为: \section{标题内容} 更改为: \section[标题内容]{标题内容\protect\footnote{脚注内容}} 语法讲解: \section[]{} []内为短标题,作为目录和页眉中的标题。…

在类库中使用ASP.NET Core API

解决办法1 官方文档 解决办法2 将类库修改为web项目&#xff0c;然后设置输出为类库形式即可 <Project Sdk"Microsoft.NET.Sdk.Web"><PropertyGroup><TargetFramework>netcoreapp3.1</TargetFramework><OutputType>Library</O…

K8s 部署 CNI 网络组件+k8s 多master集群部署+负载均衡

------------------------------ 部署 CNI 网络组件 ------------------------------ ---------- 部署 flannel ---------- K8S 中 Pod 网络通信&#xff1a; ●Pod 内容器与容器之间的通信 在同一个 Pod 内的容器&#xff08;Pod 内的容器是不会跨宿主机的&#xff09;共享同一…

springboot心理咨询管理系统

springboot心理咨询管理系统&#xff0c;java心理咨询管理系统&#xff0c;心理咨询管理系统 运行环境&#xff1a; JAVA版本&#xff1a;JDK1.8 IDE类型&#xff1a;IDEA、Eclipse都可运行 数据库类型&#xff1a;MySql&#xff08;8.x版本都可&#xff09; 硬件环境&#xf…

社区迭代|ETLCloud社区新增“论坛”啦!

ETLCloud社区是谷云科技RestCloud旗下面向开发工程师、集成研发人员等技术人员提供全方位交流和学习的开放式平台&#xff0c;也是ETLCloud在产品生态赋能上的一大亮点&#xff0c;旨在能够帮助更多的用户更快捷高效的掌握技能&#xff0c;也为企业提供集成人才培养赋能&#x…

ue5 右击.uproject generator vs project file 错误

出现如下错误 Unable to find valid 14.31.31103 C toolchain for VisualStudio2022 x64 就算你升级了你的 vs installer 也不好使 那是因为 在C:\Users\{YourUserName}\AppData\Roaming\Unreal Engine\UnrealBuildTool\BuildConfiguration.xml 这个缓存配置文件中写死了 14…

基于MFC的串口通信

1、串口通信的概述&#xff1a; 串口是一种重要的通信资源&#xff0c;例如鼠标口、USB接口都是串口。串行端口是CPU和串行设备间的编码转换器。当数据从CPU经过端口发送出去的时候&#xff0c;字节数据会被转为串行的位&#xff0c;在接收数据时&#xff0c;串行的位被转换为…

听GPT 讲Rust源代码--library/std(5)

File: rust/library/std/src/sys/unsupported/time.rs 在Rust源代码中&#xff0c;rust/library/std/src/sys/unsupported/time.rs文件的作用是提供对于时间的支持&#xff0c;特别是在不支持的操作系统上。 该文件中包含了两个结构体定义&#xff0c;分别是Instant和SystemTim…

竞赛 深度学习大数据物流平台 python

文章目录 0 前言1 课题背景2 物流大数据平台的架构与设计3 智能车货匹配推荐算法的实现**1\. 问题陈述****2\. 算法模型**3\. 模型构建总览 **4 司机标签体系的搭建及算法****1\. 冷启动**2\. LSTM多标签模型算法 5 货运价格预测6 总结7 部分核心代码8 最后 0 前言 &#x1f5…

SpringMVC Day 04 : 数据绑定

前言 SpringMVC是一个非常流行的Java Web框架&#xff0c;它提供了很多方便的功能和工具来帮助我们构建高效、灵活的Web应用程序。其中&#xff0c;数据绑定就是SpringMVC中非常重要的一部分&#xff0c;它可以帮助我们方便地将请求参数绑定到Java对象上&#xff0c;从而简化了…

LLM在text2sql上的应用 | 京东云技术团队

一、前言&#xff1a; 目前&#xff0c;大模型的一个热门应用方向text2sql它可以帮助用户快速生成想要查询的SQL语句。那对于用户来说&#xff0c;大部分简单的sql都是正确的&#xff0c;但对于一些复杂逻辑来说&#xff0c;需要用户在产出SQL的基础上进行简单修改&#xff0c…

16 用于NOMA IoT网络上行链路安全速率最大化的HAP和UAV协作框架

文章目录 摘要相关模型仿真实验仿真结果 摘要 优化无人机到HAP的信道分配、用户功率和无人机三维位置来研究上行安全传输解决非凸问题&#xff0c;采用K-means聚类算法&#xff0c;将成对的用户划分成不同的组&#xff0c;每个簇可以有相应的无人机服务&#xff0c;然后将构造…

实验六:DHCP、DNS、Apache、FTP服务器的安装和配置

1. (其它) 掌握Linux下DHCP、DNS、Apache、FTP服务器的安装和配置&#xff0c;在Linux服务器上部署JavaWeb应用 完成单元八的实训内容。 1、安装 JDK 2、安装 MySQL 3、部署JavaWeb应用 安装jdk 教程连接&#xff1a;linux安装jdk8详细步骤-CSDN博客 Jdk来源&#xff1a;linu…

鱼眼图像去畸变python / c++

#鱼眼模型参考链接 本文假设去畸变后的图像与原图大小一样大。由于去畸变后的图像符合针孔投影模型&#xff0c;因此不同的去畸变焦距得到不同的视场大小&#xff0c;且物体的分辨率也不同。可以见上图&#xff0c;当焦距缩小为一半时&#xff0c;相同大小的图像&#xff08;横…

Prompt设计与大语言模型微调

本文主要介绍了Prompt设计、大语言模型SFT和LLM在手机天猫AI导购助理项目应用。 ChatGPT基本原理 “会说话的AI”&#xff0c;“智能体” 简单概括成以下几个步骤&#xff1a; 预处理文本&#xff1a;ChatGPT的输入文本需要进行预处理。输入编码&#xff1a;ChatGPT将经过预处理…

matlab simulink ADRC控制样例

1、内容简介 略 3-可以交流、咨询、答疑 2、内容说明 用adrc控制传递函数&#xff0c;保证输出达到预期 ADRC控制器、传递函数 3、仿真分析 4、参考论文 略

《ATTCK视角下的红蓝对抗实战指南》一本书构建完整攻防知识体系

一. 网络安全现状趋势分析 根据中国互联网络信息中心&#xff08;CNNIC&#xff09;发布的第51次《中国互联网络发展状况统计报告》&#xff0c;截至2022年12月&#xff0c;我国网民规模为10.67亿&#xff0c;互联网普及率达75.6%。我国有潜力建设全球规模最大、应用渗透最强的…

.\missyou-0.0.1-SNAPSHOT.jar中没有主清单属性

引用&#xff1a;https://blog.csdn.net/marypiglwy/article/details/132016171 配置的时候 <skip>true</skip> skip设置为true&#xff0c;跳过了执行插件&#xff0c;&#xff0c; <plugin><groupId>org.springframework.boot</groupId><a…