基于【逻辑回归】的评分卡模型金融借贷风控项目实战

背景知识:        

在银行借贷过程中,评分卡是一种以分数形式来衡量一个客户的信用风险大小的手段。今天我们来复现一个评分A卡的模型。完整的模型开发所需流程包括:获取数据,数据清洗和特征工程,模型开发,模型检验和评估,模型上线,模型检测和报告。

我们先来导入相关的模块:

'''获取数据——数据清洗——特征工程——模型训练和开发——模型检验和评估——模型上线和监控'''
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler,MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

先获取数据并查看数据的形状:

# 1.获取数据
data = pd.read_csv(r"E:\AI课程笔记\机器学习_2\05逻辑回归与评分卡\rankingcard.csv")
data.drop("Unnamed: 0", axis=1, inplace=True)
data.shape #(150000, 11)

     接着做数据清洗,包括重复值,缺失值和异常值。先去除重复值并重置索引:

# 2.1 去除重复值
data.drop_duplicates(inplace=True)
data.shape
data.index = range(data.shape[0]) # 重置索引

查看有多少缺失值:

data.isnull().sum() # 查看缺失值

发现monthly Income和numberofdependents有缺失值。在这里,NumberOfDependents用所在列的平均值来填充

(注意:在具体业务中,算法工程师需要和业务人员具体了解每项业务指标的含义来筛选最合适的填充方式)

data["NumberOfDependents"].fillna(int(data["NumberOfDependents"].mean()), inplace=True) # 用平均值填补缺失值

MonthlyIncome我们用随机森林回归(随机森林回归的原理是:基于用特征ABC去预测Z的思想,所以也可以用ABZ去预测C)来填充:

def fill_missing_rf(x, y, to_fill):"""使用随机森林填补一个特征的缺失值的函数参数:x:要填补的特征矩阵y:完整的,没有缺失值的标签to_fill:字符串,要填补的那一列的名称"""# 构建我们的新特征矩阵和新标签df = x.copy() # 复制特征矩阵fill = df.loc[:, to_fill] # 提取我们的标签df = pd.concat([df.loc[:, df.columns != to_fill], pd.DataFrame(y)], axis=1) # 构建新的特征矩阵# 找出我们的训练集和测试集Ytrain = fill[fill.notnull()]Ytest = fill[fill.isnull()]Xtrain = df.iloc[Ytrain.index, :]Xtest = df.iloc[Ytest.index, :]# 用随机森林回归来填补缺失值from sklearn.ensemble import RandomForestRegressor as rfrrfr = rfr(n_estimators=100).fit(Xtrain, Ytrain)Ypredict = rfr.predict(Xtest)return Ypredict
X = data.iloc[:, 1:]
Y = data["SeriousDlqin2yrs"]
y_pred = fill_missing_rf(X, Y, "MonthlyIncome")
data.loc[data.loc[:, "MonthlyIncome"].isnull(), "MonthlyIncome"] = y_pred
data.isnull().sum() # 查看缺失值

将缺失值填充完毕后,查看数据信息:

发现数据已经没有缺失值了。最后我们来处理异常值。显示数据永远都会有异常值,我们需要去根据业务性质去捕捉。在这里,我们发现有一条年龄为0的数据,这显然是异常值,因此我们将它删除,并返回删除后的原数据(还有更多的异常值需要银行业务方面的知识,和算法无关,这里就不赘述了):

data = data[data["age"] != 0]

到这里,重复值,缺失值和异常值我们都处理完毕了。再考虑是否需要做标准化,答案是不需要。因为对业务人员来说,他们无法理解标准化后的数据是什么意思。

接下来我们查看一下好客户和坏客户分别有多少:

Y.value_counts()

我们发现标签值0有13w+的数据,1只有不到1w的数据,这说明数据有严重的样本不均衡问题。在这里我们可以使用上采样法去平衡样本:

# 样本不均衡,用上采样算法生成新的样本
import imblearn # imblearn是专门用来处理样本不均衡问题的库
from imblearn.over_sampling import SMOTE # SMOTE是上采样算法
sm = SMOTE(random_state=42) # 实例化
X = data.iloc[:, 1:] 
Y = data["SeriousDlqin2yrs"]
X, Y = sm.fit_resample(X, Y) # 返回上采样过后的特征矩阵和标签
X = pd.DataFrame(X) # 将X转换为DataFrame格式
Y = pd.DataFrame(Y) # 将Y转换为DataFrame格式
data2 = pd.concat([Y, X], axis=1) # 将X和Y合并
data2.columns = data.columns # 将data2的列名改为data的列名
data2.head(5)
data2.shape
Y.value_counts()

这个时候我们发现样本就均衡了。

到这里,我们就完成了数据预处理的全部工作。接下来我们将数据切片成特征矩阵和标签矩阵,在其基础上划分为训练集和测试集后,将特征训练集和标签训练集合并,特征测试集和标签测试集合并,并将他们保存至本地:

# 数据集划分
X = data2.iloc[:, 1:]
Y = data2.iloc[:, 0]
Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.3, random_state=420)# 训练集和测试集分别存储至本地
train = pd.concat([Ytrain, Xtrain], axis=1)
train.index = range(train.shape[0])
train.columns = data.columnstest = pd.concat([Ytest, Xtest], axis=1)
test.index = range(test.shape[0])
test.columns = data.columnstrain.to_csv(r"E:\AI课程笔记\机器学习_2\05逻辑回归与评分卡\train.csv")
test.to_csv(r"E:\AI课程笔记\机器学习_2\05逻辑回归与评分卡\test.csv")

接下来我们对各个特征进行分档,我们使用分箱来离散化连续变量,好让拥有不同属性的人,根据不同的特征被分成不同的类别,打上不同的分数,类似于聚类。分箱最好在4-5个为佳。

分箱有几个重要的原因:

  • 简化模型:将连续数据分成箱子后,可以将其视为离散数据,更容易建立和理解模型。
  • 处理异常值:分箱可以帮助识别和处理异常值,将其归入适当的箱子中,减少异常值对模型的影响。
  • 解决非线性关系:某些情况下,变量与目标之间的关系可能是非线性的,分箱可以捕捉到这种非线性关系。

在这里还要介绍两个概念,IV和WOE。

        每个箱子的WOE越大,代表这个箱子的优质客户越多;IV值衡量的是某一个变量的信息量,可用来表示一个变量的预测能力,用来做特征选择。箱子越多IV会越小,因为信息损失会很多;IV越小说明特征几乎不带有有效信息,对模型没有贡献,可以被删除,但IV越大,有效信息非常多,对模型的贡献率超高并且可疑。所以我们需要找到V的大小和箱子个数的平衡点。

        在分箱的过程中,箱子的数量是一个重要的参数。箱子的数量越多,每个箱子的区间就越小,模型对数据的拟合程度就越高,但是也会导致信息损失更多。因为当箱子的数量增加时,每个箱子中的样本数量就会减少,从而导致每个箱子中的样本分布更加不均匀,可能会出现某些箱子中只有少数样本,或者某些箱子中只有一种样本。这些情况都会导致模型的泛化能力下降,从而影响模型的预测效果。所以我们需要画出IV值的学习曲线。

分箱的步骤是:①先把连续性变量分成分类型变量②确保每一组都包含两种类型的样本③对相邻的组进行卡方检验,如果P值很大则进行合并,直到少于N箱。④让一个特征分成(2,3,4,20)箱,观察每个特征的IV值如何变化,找出最适合的分箱个数。⑤计算每个分箱的WOE值,观察分箱效果。

接下来以[age]特征为例,来对数据进行分箱,在这里我们用pandas库的qcut函数来分箱(假设先分成20箱,q = 20),并生成一个“qcut新列”:

# qcut等频分箱
train1 = train.copy()
train1["qcut"], updown = pd.qcut(train1["age"], retbins=True, q=20) # 等频分箱
train1["qcut"].value_counts() # 查看每个分箱中的样本量
updown # 查看每个分箱的上限和下限

新生成的列如下图所示:

可以清晰的看到每个样本所在的分箱情况,我们再来看看每个箱子里面包含的样本数:

接下来我们再来看看每个箱子中0和1的个数:

# 查看每个分箱中0和1的数量
coount_y0 = train1[train1["SeriousDlqin2yrs"] == 0].groupby(by="qcut").count()["SeriousDlqin2yrs"] # 每个箱子中0的个数
coount_y1 = train1[train1["SeriousDlqin2yrs"] == 1].groupby(by="qcut").count()["SeriousDlqin2yrs"] # 每个箱子中1的个数

上图所示的是每个箱子中0的个数。为了将数据信息统一展示,我们运行如下代码将数据合并:-

num_bins = [*zip(updown, updown[1:], coount_y0, coount_y1)] # 将每个分箱的上限、下限、0的个数、1的个数放在一起

为了让数据可读性更强,我们重新生成表头:

    columns = ["min", "max", "count_0", "count_1"]df = pd.DataFrame(num_bins, columns=columns)

每个箱子的上限和下限以及0的数量,1的数量都清晰可见了。接下来我们构造两个函数,分别计算WOE和IV值:

# 计算WOE和iv值
def get_woe(num_bins):# 通过num_bins数据计算woecolumns = ["min", "max", "count_0", "count_1"]df = pd.DataFrame(num_bins, columns=columns) # 将num_bins转换为DataFramedf["total"] = df.count_0 + df.count_1 # 每个箱子的总数df["percentage"] = df.total / df.total.sum() # 每个箱子的占比df["bad_rate"] = df.count_1 / df.total # 每个箱子中1的占比df["good%"] = df.count_0 / df.count_0.sum() # 每个箱子中0的占比df["bad%"] = df.count_1 / df.count_1.sum() # 每个箱子中1的占比df["woe"] = np.log(df["good%"] / df["bad%"]) # 计算每个箱子的woe值return df
# 计算IV值
def get_iv(df): # 通过df计算IV值rate = df["good%"] - df["bad%"] # 计算每个箱子中好人和坏人的占比差iv = np.sum(rate * df.woe) # 计算IV值return iv

接下来我们通过卡方检验,判断箱子之间的相似性:

# 卡方检验 用来检验两个变量之间是否独立
num_bins_ = num_bins.copy()
import scipy.stats
IV = []
axisx = []
while len(num_bins_) > 2:pvs = []# 获取num_bins_两两之间的卡方检验的置信度(或卡方值)for i in range(len(num_bins_) - 1):x1 = num_bins_[i][2:]x2 = num_bins_[i + 1][2:]# 0返回卡方值,1返回p值pv = scipy.stats.chi2_contingency([x1, x2])[1] # p值pvs.append(pv)# 通过p值进行处理,合并p值最大的两组i = pvs.index(max(pvs))num_bins_[i:i + 2] = [(num_bins_[i][0],num_bins_[i + 1][1],num_bins_[i][2] + num_bins_[i + 1][2],num_bins_[i][3] + num_bins_[i + 1][3])] # 将卡方值最大的两组合并bins_df = get_woe(num_bins_)axisx.append(len(num_bins_))IV.append(get_iv(bins_df))
plt.figure()
plt.plot(axisx, IV)
plt.xticks(axisx)
plt.xlabel("number of box")
plt.ylabel("IV")
plt.show()

由图可知,我们要找到转折点,也就是当箱体等于6时,可以得到最优的IV。因为当箱体从6开始,IV值的增长速率由快转慢。

接下来我们把分箱过程包装成1个函数:

# 将合并箱体的过程包装成函数,实现分箱
def get_bin(num_bins,n):while len(num_bins) > n:pvs = []# 获取num_bins_两两之间的卡方检验的置信度(或卡方值)for i in range(len(num_bins) - 1):x1 = num_bins[i][2:]x2 = num_bins[i + 1][2:]# 0返回卡方值,1返回p值pv = scipy.stats.chi2_contingency([x1, x2])[1] # p值pvs.append(pv)# 通过p值进行处理,合并p值最大的两组i = pvs.index(max(pvs))num_bins[i:i + 2] = [(num_bins[i][0],num_bins[i + 1][1],num_bins[i][2] + num_bins[i + 1][2],num_bins[i][3] + num_bins[i + 1][3])] # 将卡方值最大的两组合并return num_binsafterbins = get_bin(num_bins, 6)
afterbins

可以看到,原先20箱的数据,现在变成了6箱。查看一下每组的WOE值:

bins_df = get_woe(afterbins)
bins_df

可以看到,WOE的组间差距很大,并且WOE单调递增(如果WOE有超过两个转折点,说明分箱过程有问题)。接下来我们将上述的全部分箱过程,打包成一个函数:

# 接下来我们将选取最佳分箱个数的过程包装成函数,对所有特征进行分箱
def graphforbestbin(DF, X, Y, n=5, q=20, graph=True):"""自动最优分箱函数,基于卡方检验的分箱参数:DF: 需要输入的数据X: 需要分箱的列名Y: 分箱数据对应的标签 Y 列名n: 保留分箱个数q: 初始分箱的个数graph: 是否要画出IV图像区间为前开后闭 (]"""DF = DF[[X, Y]].copy()DF["qcut"], bins = pd.qcut(DF[X], retbins=True, q=q, duplicates="drop")coount_y0 = DF.loc[DF[Y] == 0].groupby(by="qcut").count()[Y] # 每个箱子中0的个数coount_y1 = DF.loc[DF[Y] == 1].groupby(by="qcut").count()[Y] # 每个箱子中1的个数num_bins = [*zip(bins, bins[1:], coount_y0, coount_y1)] # 将每个分箱的上限、下限、0的个数、1的个数放在一起for i in range(q):if 0 in num_bins[0][2:]:num_bins[0:2] = [(num_bins[0][0],num_bins[1][1],num_bins[0][2] + num_bins[1][2],num_bins[0][3] + num_bins[1][3])]continuefor i in range(len(num_bins)):if 0 in num_bins[i][2:]:num_bins[i - 1:i + 1] = [(num_bins[i - 1][0],num_bins[i][1],num_bins[i - 1][2] + num_bins[i][2],num_bins[i - 1][3] + num_bins[i][3])]breakelse:breakdef get_woe(num_bins):# 通过num_bins数据计算woecolumns = ["min", "max", "count_0", "count_1"]df = pd.DataFrame(num_bins, columns=columns) # 将num_bins转换为DataFramedf["total"] = df.count_0 + df.count_1 # 每个箱子的总数df["percentage"] = df.total / df.total.sum() # 每个箱子的占比df["bad_rate"] = df.count_1 / df.total # 每个箱子中1的占比df["good%"] = df.count_0 / df.count_0.sum() # 每个箱子中0的占比df["bad%"] = df.count_1 / df.count_1.sum() # 每个箱子中1的占比df["woe"] = np.log(df["good%"] / df["bad%"]) # 计算每个箱子的woe值return dfdef get_iv(df): # 通过df计算IV值rate = df["good%"] - df["bad%"] # 计算每个箱子中好人和坏人的占比差iv = np.sum(rate * df.woe) # 计算IV值return ivIV = []axisx = []while len(num_bins) > n:pvs = []# 获取num_bins_两两之间的卡方检验的置信度(或卡方值)for i in range(len(num_bins) - 1):x1 = num_bins[i][2:]x2 = num_bins[i + 1][2:]# 0返回卡方值,1返回p值pv = scipy.stats.chi2_contingency([x1, x2])[1]pvs.append(pv)# 通过p值进行处理,合并p值最大的两组i = pvs.index(max(pvs))num_bins[i:i + 2] = [(num_bins[i][0],num_bins[i + 1][1],num_bins[i][2] + num_bins[i + 1][2],num_bins[i][3] + num_bins[i + 1][3])]bins_df = pd.DataFrame(get_woe(num_bins))axisx.append(len(num_bins))IV.append(get_iv(bins_df))if graph:plt.figure()plt.plot(axisx, IV)plt.xticks(axisx)plt.xlabel("number of box")plt.ylabel("IV")plt.show()return bins_df
for i in train.columns[1:-1]:print(i)graphforbestbin(train, i, "SeriousDlqin2yrs", n=2, q=20, graph=True)

运行一下看看结果:

可以发现有的可以自动分箱,有的无法自动分箱。无法自动分箱的原因是该特征本身就是分类特征,不是连续特征,因此系统无法绘制出分箱图像。对于无法自动分箱的特征,我们用负无穷和正无穷替换原有的最小值和最大值,这是为了可以覆盖所有情况

# 可以自动分箱的变量
auto_col_bins = {"RevolvingUtilizationOfUnsecuredLines": 6,"age": 5,"DebtRatio": 4,"MonthlyIncome": 3,"NumberOfOpenCreditLinesAndLoans": 5}# 不能自动分箱的变量
hand_bins = {"NumberOfTime30-59DaysPastDueNotWorse": [0, 1, 2, 13],"NumberOfTimes90DaysLate": [0, 1, 2, 17],"NumberRealEstateLoansOrLines": [0, 1, 2, 4, 54],"NumberOfTime60-89DaysPastDueNotWorse": [0, 1, 2, 8],"NumberOfDependents": [0, 1, 2, 3]}
# 保证区间覆盖使用np.inf替换最大值,使用-np.inf替换最小值
hand_bins = {k: [-np.inf, *v[:-1], np.inf] for k, v in hand_bins.items()}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/174620.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【微服务开篇-RestTemplate服务调用、Eureka注册中心、Nacos注册中心】

本篇用到的资料:https://gitee.com/Allengan/cloud-demo.githttps://gitee.com/Allengan/cloud-demo.git 目录 1.认识微服务 1.1.单体架构 1.2.分布式架构 1.3.微服务 1.4.SpringCloud 1.5.总结 2.服务拆分和远程调用 2.1.服务拆分原则 2.2.服务拆分示例 …

Composition API的引入

目录 全局API的移除和替代 插件的改进 TypeScript支持的增强 优势 劣势 总结 Vue.js 3.x版本引入了Composition API,这是一个全新的API风格,旨在提高代码的可读性和重用性。Composition API使我们可以根据逻辑相关性组织代码,而不是按照…

Typora(morkdown编辑器)的安装包和安装教程

Typora(morkdown编辑器)的安装包和安装教程 下载安装1、覆盖文件2、输入序列号①打开 typora ,点击“输入序列号”:②邮箱一栏中任意填写(但须保证邮箱地址格式正确),输入序列号,点击…

从0到1之微信小程序快速入门(03)

目录 什么是生命周期函数 WXS脚本 ​编辑 与 JavaScript 不同 纯数据字段 组件生命周期 定义生命周期方法 代码示例 组件所在页面的生命周期 代码示例 插槽 什么是插槽 启用多插槽 ​编辑 定义多插槽 组件通信 组件间通信 监听事件 触发事件 获取组件实例 自…

实现接口自动化测试

最近接到一个接口自动化测试的case,并展开了一些调研工作,最后发现,使用pytest测试框架并以数据驱动的方式执行测试用例,可以很好的实现自动化测试。这种方式最大的优点在于后续进行用例维护的时候对已有的测试脚本影响很小。当然…

【MySQL】C语言连接数据库

文章目录 一、安装 MySQL 库二、MySQL C API 相关接口1、C API 官方文档2、初始化 MYSQL3、连接 MySQL4、下发 mysql 指令5、获取 mysql 查询结果6、释放 MYSQL_RES 对象7、关闭 MySQL 连接8、MySQL 其他操作9、总结 三、使用图形化工具连接 MySQL 一、安装 MySQL 库 我们之前…

.jnlp

首先配置电脑的java环境。 百度搜索jre下载,会有很多结果,一般选择官网进行下载。 下载正确的jre版本。 我的电脑是windows 64位,根据你自己电脑的情况选择版本进行下载。不懂自己电脑是多少位的可以看下一步。 查看电脑是64位还是32…

【RabbitMQ 实战】12 镜像队列

一、镜像队列的概念 RabbitMQ的镜像队列是将消息副本存储在一组节点上,以提高可用性和可靠性。镜像队列将队列中的消息复制到一个或多个其他节点上,并使这些节点上的队列保持同步。当一个节点失败时,其他节点上的队列不受影响,因…

【多线程面试题十九】、 公平锁与非公平锁是怎么实现的?

文章底部有个人公众号:热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享? 踩过的坑没必要让别人在再踩,自己复盘也能加深记忆。利己利人、所谓双赢。 面试官: 公平锁与非公平锁是怎么…

网络安全—小白自学

1.网络安全是什么 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 2.网络安全市场 一、是市场需求量高; 二、则是发展相对成熟…

【智能座舱系列】- 深度解密小米Hyper OS,华为HarmonyOS区别

上一篇文章《小米的澎湃OS到底牛不牛?与鸿蒙系统之间差距有多大》,从多个方面比较了小米Hyper OS 与 华为HarmonyOS的区别,本篇文章继续从架构层面深度解读两者本质的区别。 小米澎湃OS是“以人为中心,打造人车家全生态操作系统”,该系统基于深度进化的Android以及自研的V…

低代码软件在酒店行业的应用:提升效率与创新!

疫情放开后,旅游业开始兴盛发展,酒店行业也恢复了疫情前的繁忙。但是由于管理架构上的不完善导致很多酒店并不能很好地承接巨大的客流量,而消费者在旅游过程对体验要求是最高的,所以酒店拥有一个能够高效运营的管理系统至关重要。…

高等数学啃书汇总重难点(八)向量代数与空间解析几何

持续更新,高数下第一章,整体来说比较简单,但是需要牢记公式,切莫掉以轻心~ 一.向量平行的充要条件 二.向量坐标的线性运算 三.向量的几何性质 四.数量积 五.向量积 六.混合积 七.曲面方程 八.空间曲线方程 九.平面的点法式方程 十…

Linux高性能服务器编程——ch8笔记

第8章 高性能服务器程序框架 8.1 服务器模型 服务器启动后,首先创建一个(或多个)监听socket,并调用bind函数将其绑定到服务器感兴趣的端口,然后调用listen函数等待客户连接。服务器稳定运行之后,客户端就可…

Linux启动之uboot分析

Linux启动之uboot分析 uboot是什么?一、补充存储器概念1.存储器种类1.norflash - 是非易失性存储器(也就是掉电保存)2.nandflash - 是非易失性存储器(也就是掉电保存)3.SRAM - 静态随机访问存储器 - Static Random Acc…

如何在宝塔面板安装配置MySQL数据库并实现公网访问

宝塔安装MySQL数据库,并内网穿透实现公网远程访问 文章目录 宝塔安装MySQL数据库,并内网穿透实现公网远程访问前言1.Mysql服务安装2.创建数据库3.安装cpolar3.2 创建HTTP隧道 4.远程连接5.固定TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网…

【鸿蒙软件开发】ArkTS基础组件之Select(下拉菜单)、Slider(滑动条)

文章目录 前言一、Select下拉菜单1.1 子组件1.2 接口参数 1.3 属性1.4 事件1.5 示例代码 二、Slider2.1 子组件2.2 接口参数:SliderStyle枚举说明 2.3 属性2.4 事件SliderChangeMode枚举说明 2.5 示例代码 总结 前言 Select组件:提供下拉选择菜单&#…

什么是α测试β测试和灰度测试?

吃软件测试这碗饭的,如果基础理论都不懂,谈何长久? 欢迎来学习本系列,基础理论比较枯燥,这也是为什么现在很少人掌握的主要原因。热饭尽量用浅显易懂 生动的例子 来帮助大家学习基础理论,所以请耐心看完此系…

【Linux】:Linux开发工具之Linux编辑器vim的使用

🔫1.Linux编辑器-vim使用 📤 vi/vim的区别简单点来说,它们都是多模式编辑器,不同的是vim是vi的升级版本,它不仅兼容vi的所有指令,而且还有一些新的特性在里面。例如语法加亮,可视化操作不仅可以…

关于Anaconda及其镜像源的相关问题

1. 创建的虚拟环境中没有bin文件 conda create -n test_env请在上诉代码后添加对应的python对应版本,即可创建成功 conda create -n test_env python3.82. 关于anaconda中镜像源的相关操作 设置pip的全局索引源为阿里云镜像(注意是全局索引&#xff0…