Panda3d 介绍

Panda3d 介绍

文章目录

  • Panda3d 介绍
    • Panda3d 的安装
    • Panda3d 的坐标系统介绍
    • Panda3d 的运行
    • Panda3d 加载一个熊猫
      • 父节点和子节点之间的关系
    • 验证Panda3d 的坐标系统
      • X 轴的平移
      • Y 轴的平移
      • Z 轴的平移
      • X 轴的旋转
      • Y 轴的旋转
      • Z 轴的旋转

Panda3D是一个3D引擎:一个用于3D渲染和游戏开发的子程序库。该库是带有一组Python绑定的c++。使用Panda3D进行游戏开发通常需要编写一个Python或c++程序来控制Panda3D库。 Panda3D是为商业游戏开发而创建的,并且仍然用于开发商业游戏。

特点如下:

  • 提供了Python 和 C++ 两种形式的接口,底层采用C++实现的,因此在保证运行效率的前提下,使用panda3更加容易编写用户想要的界面;
  • 安装体积小,代码开源;
  • 具有良好的防崩溃机制;

Panda3d的官方网站
Panda3d的源代码
Panda3d国外的教程

Panda3d 的安装

首先通过pip指令下载:

pip3 install panda3d

Panda3d 的坐标系统介绍

Panda3d 的坐标系系统如下图所示, X 轴朝右,Y 轴朝后,Z 轴朝上。 姿态描述为 HPR,可以是欧拉角的形式,不过 H 表示的是绕着 Z 轴旋转, P 表示的是绕着 X 轴旋转, R 表示的是绕着 Y 轴旋转。
Panda3d姿态旋转图

Panda3d 的运行

任何一个3D引擎都需要一个窗口来承载其中的场景内容,那么我们的第一步就是了解Panda3d中如何打开一个窗口界面。

在Panda3d中是通过ShowBase类来创建一个游戏窗口,代码如下:

from direct.showbase.ShowBase import ShowBaseclass App(ShowBase):def __init__(self):ShowBase.__init__(self)app = App()
app.run()

程序解释如下:
上述程序中创建了一个ShowBase类,通过 Run 函数来显示这个窗口,运行上述代码,打开的窗口如下所示,从下图中可以看出窗口的title默认显示的是 Panda3d,默认打开的窗口大小是 800 * 600。

Pan3d 空白窗口
可以调整对应的参数让这个窗口显示的更大,一个方法就是直接点击窗口的最大化按钮。另外一种是通过代码实现,简而言之就是通过创建一个WindowProperties来实现,比如说你可以创建一个 1000 * 800 的窗口,这样如下操作:

from direct.showbase.ShowBase import ShowBase
from panda3d.core import WindowPropertiesclass App(ShowBase):def __init__(self):ShowBase.__init__(self)properties = WindowProperties()properties.setSize(1000, 800)self.win.requestProperties(properties)app = App()
app.run()

Panda3d 加载一个熊猫

一个游戏是需要一个背景的,因此,场景(Scenery)是需要第一个添加的元素。我们可以直接导入预设的场景模型来构建游戏背景。在添加之前,需要说明panda3d的一个基本数据结构:场景图(Scene Graph)。场景图其实是一个树形的数据结构,根节点是一个render对象,在根节点下的都是需要被渲染的元素。所以一般通过需要渲染元素的reparentTo() 方法将括号内的元素设为需要渲染元素的父节点(通过创建节点路径来实现)。比如我们获取了场景模型scene,那么我们可以通过scene.reparentTo(self.render)来将render设为场景模型的父节点(也可以理解为将场景模型挂载在render对象下),那么游戏启动时,由于render有scene这个子节点,所以scene就会被渲染在窗口上,从而让我们看到该场景。

Panda3d场景关系图

此外,给定节点的状态(例如其位置、姿态变化、模型的缩放)相对于其父节点的状态。也就是说,当我们获取一个子节点的位置的时候,如果位置参数为“零”,则表示“与其父节点位于同一位置”; 旋转姿态参数为“零”,则表示“与父节点具有相同的姿态”。因此,每个节点都会影响其子节点及其子节点,依此类推。父节点和子节点的之间的关系是父节点的移动一定会带动子节点的移动,但是子节点移动并不会带动父节点的移动。

你可以把它想象成有点像铰接小雕像的手臂:移动下臂实际上不会改变上臂。但是,移动上臂会导致下臂相应地移动。此外,如果上臂旋转为向上指向,则下臂同样指向上方,并且下臂的任何旋转都是相对于该方向的。
Panda3d场景中子父节点的关系
但是,大多数时候我们不会直接与节点进行交互。相反,我们与称为“NodePath”的进行交互。这实质上描述了从根到相关节点的场景图的路径。甚至可以为单个节点设置多个不同的 NodePath。

然而,出于实际目的,NodePath可以被认为是与节点几乎(但不完全)相同的:你可以用节点做的大部分事情,你可以用NodePath做(而且更方便)。此外,NodePaths包含对其节点的引用,因此我们也可以通过NodePaths 去操作对应的子节点。

最终我们往场景中导入一个熊猫,panda3d 模型下载

代码如下:

    self.panda = self.loader.loadModel('./panda3d-master/models/panda-model.egg')self.panda.reparentTo(self.render)self.panda.setScale(0.005,  0.005, 0.005)self.panda.setPos(0, 10, -1)

Panda3d导入一个熊猫

上述程序中,我们通过loader.loadModel()方法加载预设的场景模型,需要说明的是,该方法返回的是一个NodePath类,这其实是一个指向模型的指针。

上述的setScale(0.005, 0.005, 0.005)方法把载入场景模型的三个维度都缩小到原本的0.005倍再渲染。 setPos(0, 10, -1)方法将场景模型的位置设为(0, 10, -1),因为Panda3d 中默认相机的位置是在(0, 0, 0) 的位置,因此我们需要调整物体的位置来取得更好的显示效果。

当我们我们也可以保持物体的位置不变,通过修改相机的位置也是达到相同的效果, 在代码中控制相机的时候,最好是要调用disableMouse 函数。

    self.panda = self.loader.loadModel('./panda3d-master/models/panda-model.egg')self.panda.reparentTo(self.render)self.panda.setScale(0.005,  0.005, 0.005)self.disableMouse()self.camera.setPos(0, -10, 1)# self.panda.setPos(0, 10, -1)

Panda3d 中默认是采用鼠标进行控制相机的视角,如果我们不想采用鼠标进行控制,而是想在后续通过在代码中进行控制的话,那么也是可以禁用这种操作的,通过调用如下函数即可实现该功能。

	self.disableMouse()

这个函数的名字很容易使人误解。它只是停止了鼠标对摄影机的控制,并没有禁用鼠标。你仍可以获得鼠标的位置,以及鼠标的点击。

父节点和子节点之间的关系

下面我们通过在场景中导入两个一样的模型文件,但是修改两个模型挂载的父节点,效果和对应的代码如下:

    self.panda = self.loader.loadModel('./panda3d-master/models/panda-model.egg')self.panda.reparentTo(self.render)self.panda.setScale(0.005,  0.005, 0.005)self.panda.setPos(0, 10, -1)self.panda1 = self.loader.loadModel('./panda3d-master/models/panda-model.egg')self.panda1.reparentTo(self.render)self.panda1.setScale(0.005,  0.005, 0.005)self.panda1.setPos(3, 10, -1)

Panda3d导入两个熊猫

    self.panda = self.loader.loadModel('./panda3d-master/models/panda-model.egg')self.panda.reparentTo(self.render)self.panda.setScale(0.005,  0.005, 0.005)self.panda.setPos(0, 10, -1)self.panda1 = self.loader.loadModel('./panda3d-master/models/panda-model.egg')self.panda1.reparentTo(self.panda)self.panda1.setScale(1.0,  1.0, 1.0)self.panda1.setPos(600, 0.0, 0.0)

Panda3d导入两个熊猫父节点不同

最终上述两个代码显示的效果都是一样的,但是我们可以很明显的发现panda1的缩放比例和设置的位置是不一样的。在第一个例子中 panda1 导入的时候需要缩放 0.005 倍,但是在第一个例子中我们发现是不需要的缩放的。而对于位置而言,在第一个例子中 panda1 导入的时候设置的位置为(3, 10, -1),但是在第二个例子中我们发现设置的位置是(600, 0, 0), 通过一个简单的换算关系我们得出如下换算关系(3, 10, -1) = (0, 10, -1) + (600, 0, 0) * (0.005, 0.005, 0.005)。这个换算关系也最终验证上述所述的父节点的位置、姿态、缩放都是会影响子节点的,这个概念关系在后续的编程中是需要注意的。

    self.panda = self.loader.loadModel('./panda3d-master/models/panda-model.egg')self.panda.reparentTo(self.render)self.panda.setScale(0.001,  0.001, 0.001)self.panda.setPos(0, 10, -1)self.panda1 = self.loader.loadModel('./panda3d-master/models/panda-model.egg')self.panda1.reparentTo(self.panda)self.panda1.setScale(1.0,  1.0, 1.0)self.panda1.setPos(600, 0.0, 0.0)

Panda3d导入两个熊猫父节点不同父节点缩放

在上述代码中,我们只对父节点进行缩放,在最终的显示效果中我们可以看出子节点也进行了对应的缩放。说明父节点的位置、姿态、缩放都是会影响子节点的,这个概念关系在后续的编程中是需要注意的。

验证Panda3d 的坐标系统

为了更好的说明 Panda3d 的坐标系, X 轴朝右,Y 轴朝后,Z 轴朝上。 姿态描述为 HPR,可以是欧拉角的形式,不过 H 表示的是绕着 Z 轴旋转, P 表示的是绕着 X 轴旋转, R 表示的是绕着 Y 轴旋转。我们在场景中两个不同样子的熊猫,一开始两个熊猫都在相同的位置,然后调整第二个熊猫的位置和姿态来比较不同参数的含义,姿态的旋转以逆时针方向为正, 姿态的单位是 deg, 位置的单位是 m。

      self.panda = self.loader.loadModel('./panda3d-master/models/panda-model.egg')self.panda.reparentTo(self.render)self.panda.setScale(0.003,  0.003, 0.003)self.panda.setPos(0, 10, -1)self.panda1 = self.loader.loadModel('./panda3d-master/models/panda.egg')self.panda1.reparentTo(self.render)self.panda1.setScale(0.2,  0.2, 0.2)self.panda1.setPos(0, 10, -1)self.disableMouse()self.camera.setPos(1.5, 0, 0)

Panda3d导入两个熊猫相同位置

X 轴的平移

    self.panda1.setPos(3, 10, -1)self.panda1.setHpr(0, 0, 0)

Panda3d导入两个熊猫X方向的平移

Y 轴的平移

    self.panda1.setPos(0, 20, -1)self.panda1.setHpr(0, 0, 0)

Panda3d导入两个熊猫Y方向的平移

Z 轴的平移

    self.panda1.setPos(0, 10, 0)self.panda1.setHpr(0, 0, 0)

Panda3d导入两个熊猫Z方向的平移

X 轴的旋转

    self.panda1.setPos(3, 10, -1)self.panda1.setHpr(0, 90, 0)

Panda3d导入两个熊猫饶X轴旋转

因为 X 轴是朝向右边的,因此沿着 X 轴旋转90度,原来头是朝上的,现在改成朝前了。

Y 轴的旋转

    self.panda1.setPos(3, 10, -1)self.panda1.setHpr(0, 0, 90)

Panda3d导入两个熊猫饶Y轴旋转

因为 Y 轴是朝向后边的,因此沿着 Y 轴旋转90度,原来两只手是水平放置的,现在改成垂直方向的了。

Z 轴的旋转

    self.panda1.setPos(3, 10, -1)self.panda1.setHpr(90, 0, 0)

Panda3d导入两个熊猫饶Z轴旋转

因为 Z 轴是朝向上的,因此沿着 Z 轴旋转90度,原来肚子是朝前的,现在改成朝右了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/174892.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[Linux]线程池

[Linux]线程池 文章目录 [Linux]线程池线程池的概念线程池的优点线程池的应用场景线程池的实现 线程池的概念 线程池是一种线程使用模式。线程池是一种特殊的生产消费模型,用户作为生产者,线程池作为消费者和缓冲区。 线程过多会带来调度开销&#xff0c…

Generalized Zero-Shot Learning With Multi-Channel Gaussian Mixture VAE

L D A _{DA} DA​最大化编码后两种特征分布之间的相似性 辅助信息 作者未提供代码

1400*C. Element Extermination(贪心规律)

Problem - 1375C - Codeforces 解析: 可以发现,最左端的数字,无论删除自己还是下一个,这个位置的值都不会变小。 同理,最右端位置的值都不会变大。 所以当最后剩余两个数字的时候,只有左端小于右端数字&…

【经典面试】87 字符串解码

字符串解码 题解1 递归(程序栈)——形式语言自动机(LL(1)) : O(S)另一种递归(直观) 题解2 2个栈(逆波兰式)1个栈(参考官方,但是不喜欢) 给定一个经过编码的字符串,返回它解码后的字符串。 编码规则为: k[encoded_string],表示其中方括号内部的…

深入探究深度学习、神经网络与卷积神经网络以及它们在多个领域中的应用

目录 1、什么是深度学习? 2、深度学习的思想 3、深度学习与神经网络 4、深度学习训练过程 4.1、先使用自下上升非监督学习(就是从底层开始,一层一层的往顶层训练) 4.2、后自顶向下的监督学习(就是通过带标签的数…

文件管理怎么清内存?效率提升一倍

定期清理文件管理可以释放存储空间和提高系统性能。随着时间的推移,手机中可能会存储大量无用的数据,例如缓存、垃圾文件等,导致系统运行缓慢。那么如何清理文件管理的内存呢?下面介绍三种方法。 一、搜索无用的文件夹进行清理 1…

【Bug—eNSP】华为eNsp路由器设备启动一直是0解决方案!

目录 一、项目场景 二、问题描述 三、原因分析 四、解决方案 注意&#

(二开)Flink 修改源码拓展 SQL 语法

1、Flink 扩展 calcite 中的语法解析 1)定义需要的 SqlNode 节点类-以 SqlShowCatalogs 为例 a)类位置 flink/flink-table/flink-sql-parser/src/main/java/org/apache/flink/sql/parser/dql/SqlShowCatalogs.java 核心方法: Override pu…

高阶数据结构学习 —— 图(1)

文章目录 1、并查集2、了解图3、邻接矩阵4、压缩路径5、基本概念6、邻接表 1、并查集 并查集是一个森林,是由多棵树组成的。这相当于整套数据,分成多个集合。查找有交集的集合们,会把它们合并起来,所以叫并查集。 一开始拿到的是…

电脑突然提示找不到msvcp140.dll怎么办,解决msvcp140.dll丢失的办法

当我们在电脑上运行某些软件或游戏时,可能会遇到一个常见的错误消息:“找不到msvcp140.dll”。出现这样的情况通常意味着系统缺少一个重要的动态链接库文件,而这可能会导致程序无法正常启动。如果你现在遇到了这个问题,哪有可以用…

3D LUT 滤镜 shader 源码分析

最近在做滤镜相关的渲染学习,目前大部分 LUT 滤镜代码实现都是参考由 GPUImage 提供的 LookupFilter 的逻辑,整个代码实现不多。参考网上的博文也有各种解释,参考了大量博文之后终于理解了,所以自己重新整理了一份,方便…

最新Microsoft Edge浏览器如何使用圆角

引入 最近我看了edge官方的文档,里面宣传了edge的最新UI设计,也就是圆角,但是我发现我的浏览器在升级至最新版本之后,却没有圆角 网上有很多人说靠实验性功能即可解锁,但是指令我都试过了,每次都是搜索无结…

OpenLayers入门,OpenLayers从vue的assets资源路径加载TopoJson文件并解析数据叠加到地图上,以加载世界各国边界为例

专栏目录: OpenLayers入门教程汇总目录 前言 本章以加载世界各国边界的TopoJson格式数据为例,讲解如何使用OpenLayers从vue的assets资源路径加载TopoJson文件并解析数据叠加到地图上。 GeoJson介绍 GEOJSON是gis地图中常用的数据格式,制作地图时用于存储各种地理数据,使…

一站式解决安全问题

端玛科技致力于攻克困难的应用软件安全问题,我们的解决方案以安全标准、安全教育和安全风险评估三大支柱为安全SDLC的基础,这三大支柱相互依存,创建了一个可重复的、安全的软件开发生态系统。 主要业务范围:关注整个软件开发过程…

基于SpringBoot的在线笔记系统

技术介绍 🔥采用技术:SpringSpringMVCMyBatisJSPMaven 🔥开发语言:Java 🔥JDK版本:JDK1.8 🔥服务器:tomcat 🔥数据库:mysql 🔥数据库开发工具&…

七、【图像添加水印】

文章目录 一、制作水印1、先新建图层2、新建文字图层并调好水印文字的大小与角度3、添加图层样式4、添加定义图案 二、添加水印 一、制作水印 1、先新建图层 2、新建文字图层并调好水印文字的大小与角度 3、添加图层样式 1、打开“描边” 2、选择“颜色” 4、添加定义图案 二…

spring-代理模式

代理模式 一、概念1.静态代理2.动态代理 一、概念 ①介绍 二十三种设计模式中的一种,属于结构型模式。它的作用就是通过提供一个代理类,让我们在调用目标 方法的时候,不再是直接对目标方法进行调用,而是通过代理类间接调用。让不…

Java SE 学习笔记(十八)—— 注解、动态代理

目录 1 注解1.1 注解概述1.2 自定义注解1.3 元注解1.4 注解解析1.5 注解应用于 junit 框架 2 动态代理2.1 问题引入2.2 动态代理实现 1 注解 1.1 注解概述 Java 注解(Annotation)又称Java标注,是JDK 5.0引入的一种注释机制,Java语…

C语言 指针进阶笔记

p和*p: 如图&#xff0c;p是指针&#xff0c;指针存放着地址&#xff0c;打印出来应该是数组的值 *p是指针里里面的元素 #include<stdio.h> int main() {int a1;int b2;int c3;int p[3]{a,b,c};printf("%d",*p); return 0; } 那么现在的打印结果应该为数组的…

2023年阿里云双11有什么优惠活动?详细攻略来了!

随着双十一的临近&#xff0c;阿里云也正式开启了双11大促&#xff0c;推出了“金秋云创季”活动&#xff0c;那么&#xff0c;2023年阿里云双11的优惠活动究竟有哪些呢&#xff1f;本文将为大家详细介绍。 一、阿里云双11活动时间 1、2023年10月27日-2023年10月31日&#xff…