DeepSeek-R1 蒸馏 Qwen 和 Llama 架构 企业级RAG知识库

“DeepSeek-R1的输出,蒸馏了6个小模型”意思是利用DeepSeek-R1这个大模型的输出结果,通过知识蒸馏技术训练出6个参数规模较小的模型,以下是具体解释:

- **知识蒸馏技术原理**:知识蒸馏是一种模型压缩技术,核心是“教师-学生”模式。

在该场景中,DeepSeek-R1作为“教师模型”,它是一个大型、复杂且性能强大的模型,具有丰富的语言知识和出色的处理能力。以Qwen或Llama架构为基础的1.5B、7B、8B、14B、32B、70B这6个不同参数规模的模型作为“学生模型”。

训练时,让学生模型学习模仿教师模型DeepSeek-R1的行为,将教师模型的知识迁移到学生模型中,使学生模型在参数量和计算复杂度较低的情况下,尽可能接近甚至超越教师模型的效果。 

- **具体操作过程** - **教师模型推理**:将大规模文本数据输入DeepSeek-R1,让其对每个输入样本进行前向传播计算,得到相应的输出结果,这些输出包含软标签、中间层特征等信息,为学生模型的学习提供指导。

- **学生模型学习**:以Qwen或Llama架构为基础的6个不同参数规模的小模型,在训练过程中,以DeepSeek-R1的输出结果为学习目标,通过调整自身的参数,来尽量匹配教师模型的输出。比如在数据蒸馏中,利用DeepSeek-R1生成的大量数据对小模型进行训练;在Logits蒸馏中,让小模型学习模仿DeepSeek-R1的Logits输出的概率分布;

在特征蒸馏中,小模型学习DeepSeek-R1中间层的特征。

- **模型优化与调整**:在学习过程中,通过不断地计算学生模型输出与教师模型输出之间的差异,并利用损失函数来衡量这种差异,如常用的KL散度等。然后通过优化算法,调整学生模型的参数,使得损失函数最小化,即使得学生模型的输出尽可能地接近教师模型的输出,从而完成知识的蒸馏和迁移。 

通过这种蒸馏方式得到的6个小模型,能在保持一定性能的同时,具有更小的体积、更快的运行速度和更低的计算资源需求,更便于部署和应用在各种实际场景中。

DeepSeek 中的 Q3 和 Q4DeepSeek 是一种人工智能语言模型,其开发团队通过量化技术来优化模型的存储和推理效率。量化是一种通过减少模型参数的精度来降低模型存储需求和计算成本的技术,同时尽量保持模型性能。• Q3:表示模型采用了 3位量化。这意味着模型的权重被压缩为3位整数,从而显著减少模型的存储需求和内存占用,同时提高推理速度。不过,量化位宽越低,可能会带来一定的精度损失。• Q4:表示模型采用了 4位量化。与3位量化相比,4位量化通常在精度损失和推理速度之间取得了更好的平衡。它比3位量化占用更多内存,但精度损失更小,推理速度也相对较快。量化技术的作用1. 减少存储需求:量化可以将模型文件的大小显著缩小,方便在资源受限的设备上部署(如个人电脑、移动设备等)。2. 提高推理速度:量化后的模型在计算时更高效,能够更快地生成响应。3. 适应硬件限制:对于显存有限的设备,量化模型可以降低显存需求,使更大规模的模型能够在这些设备上运行。选择 Q3 和 Q4 的建议• 如果你的硬件资源有限(如显存较小),可以选择 Q3 模型,因为它对资源的需求更低。• 如果你需要更高的精度和更好的推理质量,可以选择 Q4 模型,因为它在精度和效率之间取得了较好的平衡。总结在 DeepSeek 的上下文中,Q3 和 Q4 是量化技术的标识符,分别表示 3位和 4位量化。它们用于优化模型的存储和推理效率,适合不同的硬件和应用场景

Qwen和Llama架构都是基于Transformer架构的语言模型架构,以下是它们的具体介绍及对比: 

  相同点 - **基础架构**:Qwen和Llama都采用了Decoder-only架构,只使用Transformer的解码器部分,这种架构使得模型在生成文本方面具有优势,符合生成任务的自回归特性,在训练过程中只需要关注前面的token来生成后续内容。 

- **位置编码**:二者都采用了Rotary Positional Embedding(RoPE),它能更好地处理文本中的长序列依赖关系,使模型能够捕捉到文本中不同位置之间的语义信息,有助于提高生成文本的质量和连贯性。

- **归一化**:都使用了RMS Norm(Root Mean Square Layer Normalization),有助于提高模型训练的稳定性和收敛速度,使得模型能够更好地学习语言的统计规律。 

- **注意力机制**:都采用了Grouped-Query Attention(GQA),可以在一定程度上降低模型的计算量,同时保持较好的性能,提高了模型处理大规模文本数据的效率。 

### 不同点 - **特色与优化方向** - **Qwen**:支持更长的上下文和多语言,在中文语境理解等方面有深入的优化,训练数据包含了大量中文领域的专业知识和应用场景数据,对中文的处理更加细腻和准确。同时Qwen2.5-Max采用超大规模MoE(混合专家)架构,基于超过20万亿token的预训练数据及精心设计的后训练方案进行训练,以提升模型的性能和泛化能力。

- **Llama**:开源且性能强大,由Meta研发,在通用知识和语言处理上表现出色,在语法理解、语义生成等方面有很好的基础,训练数据覆盖了广泛的互联网文本,使得模型具有较强的通用性,尤其在处理长文本、多轮对话时具备一定优势。 

- **最大序列长度** - **Qwen**:如Qwen-72B最大序列长度可达32k,具有很强的长文本处理能力,能够处理更长的上下文信息,在生成长篇文本、进行复杂的对话等任务中具有优势。 - **Llama**:Llama2的最大序列长度为4k,相对Qwen-72B较短,但通过一些技术手段也可进行外推,以处理更长的文本。

2、【DeepSeek大模型】企业级RAG知识库项目实战_哔哩哔哩_bilibili



 

企业级RAG(Retrieval-Augmented Generation)知识库是一种结合了检索技术和生成式人工智能技术的企业知识管理工具,以下是关于它的详细介绍:

### 定义与原理 - **定义**:企业级RAG知识库是在企业层面构建的,将知识检索与内容生成相融合的知识存储和应用系统。它旨在利用先进的技术手段,更高效地管理和利用企业内的各种知识资源,为企业的决策、运营、创新等活动提供有力支持。

- **原理**:该知识库首先会对企业内大量的结构化和非结构化数据进行收集和整理,这些数据包括文档、报告、邮件、会议记录等。然后,运用自然语言处理(NLP)技术对这些数据进行分析和理解,提取其中的关键信息并建立索引。当用户提出问题或需求时,RAG模型会同时进行检索和生成操作。

一方面,通过检索模块从知识库中快速找到与问题相关的最匹配的知识片段;

另一方面,利用生成式模型基于检索到的信息以及模型自身的语言理解和生成能力,生成更加完整、准确、有针对性的回答或解决方案。 

### 核心优势 - **提高知识获取效率**:员工能够快速获取准确的知识,减少查找信息的时间浪费,提高工作效率。例如,在处理客户咨询或解决技术问题时,能迅速从知识库中获取相关的产品信息、解决方案等。

- **增强知识应用效果**:生成式的回答方式可以为员工提供更具针对性和实用性的知识内容,帮助他们更好地理解和应用知识,提升工作质量。比如,在制定市场推广方案时,能获取到结合市场动态和企业自身情况生成的个性化建议。

- **促进知识创新与共享**:鼓励员工之间的知识交流和共享,不同部门、不同岗位的员工可以通过知识库分享经验和见解,激发创新思维,推动企业的知识创新和发展。 

### 应用场景 

- **客户服务**:客服人员可以借助RAG知识库快速准确地回答客户的问题,提供优质的客户服务体验,提高客户满意度。比如,在客户咨询产品功能、使用方法等问题时,客服能迅速从知识库中获取相关内容并进行详细解答。 

- **员工培训**:作为员工培训的重要资源,新员工可以通过知识库快速了解企业的规章制度、业务流程、产品知识等,加快入职适应速度;老员工也可以利用知识库进行持续学习,提升自身技能。 

- **决策支持**:为企业管理层提供决策所需的知识和信息支持,帮助他们做出更明智的决策。例如,在制定战略规划、投资决策时,能够从知识库中获取行业趋势、市场分析、企业历史数据等多方面的信息。

DeepSeek 中的 Q3 和 Q4DeepSeek 是一种人工智能语言模型,其开发团队通过量化技术来优化模型的存储和推理效率。量化是一种通过减少模型参数的精度来降低模型存储需求和计算成本的技术,同时尽量保持模型性能。

• Q3:表示模型采用了 3位量化。这意味着模型的权重被压缩为3位整数,从而显著减少模型的存储需求和内存占用,同时提高推理速度。不过,量化位宽越低,可能会带来一定的精度损失。• Q4:表示模型采用了 4位量化。与3位量化相比,4位量化通常在精度损失和推理速度之间取得了更好的平衡。它比3位量化占用更多内存,但精度损失更小,推理速度也相对较快。量化技术的作用1. 减少存储需求:量化可以将模型文件的大小显著缩小,方便在资源受限的设备上部署(如个人电脑、移动设备等)。

2. 提高推理速度:量化后的模型在计算时更高效,能够更快地生成响应。3. 适应硬件限制:对于显存有限的设备,量化模型可以降低显存需求,使更大规模的模型能够在这些设备上运行。选择 Q3 和 Q4 的建议• 如果你的硬件资源有限(如显存较小),可以选择 Q3 模型,因为它对资源的需求更低。• 如果你需要更高的精度和更好的推理质量,可以选择 Q4 模型,因为它在精度和效率之间取得了较好的平衡。总结在 DeepSeek 的上下文中,Q3 和 Q4 是量化技术的标识符,分别表示 3位和 4位量化。它们用于优化模型的存储和推理效率,适合不同的硬件和应用场景

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/17686.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2021年全国研究生数学建模竞赛华为杯E题信号干扰下的超宽带(UWB)精确定位问题求解全过程文档及程序

2021年全国研究生数学建模竞赛华为杯 E题 信号干扰下的超宽带(UWB)精确定位问题 原题再现: 一、背景   UWB(Ultra-Wideband)技术也被称之为“超宽带”,又称之为脉冲无线电技术。这是一种无需任何载波,通过发送纳秒…

Vue3折线图,柱状图,饼图,各种图表,适用于所有全平台

开发工具:HBuilderX编译器,uniapp,Vue3; 目标:全平台适用,Web端,小程序端,Android端,ios端,快应用等所有平台,鸿蒙app,前端&#xff…

联想电脑如何进入BIOS?

打开设置 下滑找到更新与安全 点击恢复和立即重新启动 选择疑难解答 选择UEFI固件设置 然后如果有重启点击重启 重启开机时一直点击FNF10进入BIOS界面

ICIR2025 | CubeDiff:重新利用基于扩散的图像模型来生成360°全景图

CubeDiff是一种使用基于扩散的图像模型生成 360 全景图的新型框架。通过利用立方体图表示和微调预训练的文本到图像模型,CubeDiff 简化了全景图生成过程,提供了高质量、一致的全景图。 CubeDiff 利用立方体图来表示 360 全景图,并在一次传递中…

YOLO11网络结构以及改进1

YOLO11 1.YOLO11网络结构图在哪里?2.对应的网络结构图3.每一个模块详解3.1 Conv模块3.2关于卷积模块3.3 关于给各个模块指定参数的细节 4.加入CBAM 1.YOLO11网络结构图在哪里? 2.对应的网络结构图 3.每一个模块详解 3.1 Conv模块 位置:ultr…

兔兔答题应用于微信考试、付费考试、社会调查问卷、明星知识问答、员工培训考核、模拟自测、企业面试、试题库等多种场景。

“兔兔答题系统”是一个面向教育、培训和在线测评场景的智能化答题平台(兔兔答题官网地址)。其设计目标是帮助用户高效完成题目练习、考试组织及学习效果分析,通常具备以下核心功能和特色: 一、核心功能 题库管理 支持多题型录入&…

网络安全防范

实践内容 学习总结 PDR,$$P^2$$DR安全模型。 防火墙(Firewall): 网络访问控制机制,布置在网际间通信的唯一通道上。 不足:无法防护内部威胁,无法阻止非网络传播形式的病毒,安全策略…

Java 设计模式之组合模式

文章目录 Java 设计模式之组合模式概述UML代码实现 Java 设计模式之组合模式 概述 组合模式(Composite):将对象组合成树形结构以表示’部分-整体’的层次结构。组合模式使得用户对单个对象和组合对象的使用具有一致性。优点:客户端可以统一处理单个对象…

基于VS2022在Windows上首次尝试开发C++ gRPC服务端和客户端的详细步骤

文章目录 **1. 创建解决方案与项目****2. 编写proto文件****3. 生成gRPC代码****4. 配置项目属性****服务端项目(gRPCServer)****客户端项目(gRPCClient)** **5. 实现服务端代码****6. 实现客户端代码****7. 编译与运行****注意事…

云创智城充电系统:基于 SpringCloud 的高可用、可扩展架构详解-多租户、多协议兼容、分账与互联互通功能实现

在新能源汽车越来越普及的今天,充电基础设施的管理和运营变得越来越重要。云创智城充电系统,就像一个超级智能管家,为新能源充电带来了全新的解决方案,让充电这件事变得更方便、更高效、更安全。 一、厉害的技术架构,让…

【第2章:神经网络基础与实现——2.4 实战案例:使用TensorFlow或PyTorch实现简单的MLP模型】

一、神经网络基础 咱先聊聊神经网络的基础概念。神经网络,简单来说,就是模仿人类大脑神经元结构构建的计算模型。它由大量的节点(也就是神经元)和连接这些节点的边组成。这些节点就像大脑里的一个个小处理器,而边则负责传递信息。 神经元 神经元是神经网络的基本单元。…

【Uniapp】关于实现下拉刷新的三种方式

在小程序、h5等地方中,常常会用到下拉刷新这个功能,今天来讲解实现这个功能的三种方式:全局下拉刷新,组件局部下拉刷新,嵌套组件下拉刷新。 全局下拉刷新 这个方式简单,性能佳,最推荐&#xf…

生成式聊天机器人 -- 基于Transformer实现的SeqToSeq模型 -- 上

生成式聊天机器人 -- 基于Transformer实现的SeqToSeq模型 -- 上 引言数据预处理下载并处理数据数据加载 Transformer模型嵌入层&位置编码层多头注意力机制EncoderLayerDecoderLayerPoint-wise Feed Forward NetworkTransformer 引言 在此之前,我们已经了解了如…

TCP文件传输

文件传输 工作原理 本质:客户端通过标准IO或者文件IO,读取文件中的信息 然后将读取到的信息,通过套接字发送给服务器 服务器接收到这些数据之后,立刻通过标准IO或者文件IO写到文件里面去 这个过程里面,服务器需要知道2件事情 1&…

欧拉函数杂记

定义 φ ( n ) \varphi (n) φ(n)表示 [ 1 , n ] [1,n] [1,n]中与 n n n互质的数的个数。 性质 φ ( p ) p − 1 , p ∈ P \varphi (p)p-1,\ p\in \mathbb {P} φ(p)p−1, p∈P φ ( n ) n ∏ i 1 m p i − 1 p i \varphi (n)n\prod_{i1}^{m} \frac{p_i-1}{p_i} φ(n)ni1∏…

在 CentOS 上更改 SSH 默认端口以提升服务器安全性

🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall ︱vue3-element-admin︱youlai-boot︱vue-uniapp-template 🌺 仓库主页: GitCode︱ Gitee ︱ Github 💖 欢迎点赞 👍 收藏 ⭐评论 …

Spring Boot(8)深入理解 @Autowired 注解:使用场景与实战示例

搞个引言 在 Spring 框架的开发中,依赖注入(Dependency Injection,简称 DI)是它的一个核心特性,它能够让代码更加模块化、可测试,并且易于维护。而 Autowired 注解作为 Spring 实现依赖注入的关键工具&…

搜狗拼音输入法自定义短语设置

点击搜狗拼音输入法 选择设置 选择高级->自定义短语->自定义短语设置 选择添加新的短语 填入想设置的短语,点击确定 效果展示

反射概率以及一些基本API的使用

请问,获取对象有几种方式? 1、通过构造函数来new一个对象; 2、通过clone来克隆一个对象; 3、通过序列化反序列化来构建一个对象; 4、通过反射来创建对象;a、通过Class类来创建;b、通过Const…

从零搭建:Canal实时数据管道打通MySQL与Elasticsearch

Canal实时同步Mysql Binlog至 Elasticsearch 文章目录 Canal实时同步Mysql **Binlog**至**Elasticsearch** 一. 环境准备1.环境检查检查Mysql是否开启BinLog开启Mysql BinlogJava环境检查 2.新建测试库和表3.新建Es索引 二.**部署 Canal Server****2.1 解压安装包****2.2 配置 …