Hadoop PseudoDistributed Mode 伪分布式

Hadoop PseudoDistributed Mode 伪分布式加粗样式

hadoop101hadoop102hadoop103
192.168.171.101192.168.171.102192.168.171.103
namenodesecondary namenoderecource manager
datanodedatanodedatanode
nodemanagernodemanagernodemanager
job history
job logjob logjob log

1. 升级内核和软件

yum -y update

2. 安装常用软件

yum -y install gcc gcc-c++ autoconf automake cmake make \zlib zlib-devel openssl openssl-devel pcre-devel \rsync openssh-server vim man zip unzip net-tools tcpdump lrzsz tar wget

3. 关闭防火墙

sed -i 's/SELINUX=enforcing/SELINUX=disabled/g' /etc/selinux/config
setenforce 0
systemctl stop firewalld
systemctl disable firewalld

4. 修改主机名和IP地址

hostnamectl set-hostname hadoop101
hostnamectl set-hostname hadoop102
hostnamectl set-hostname hadoop103
vim /etc/sysconfig/network-scripts/ifcfg-ens32

参考如下:

TYPE="Ethernet"
PROXY_METHOD="none"
BROWSER_ONLY="no"
BOOTPROTO="none"
DEFROUTE="yes"
IPV4_FAILURE_FATAL="no"
IPV6INIT="yes"
IPV6_AUTOCONF="yes"
IPV6_DEFROUTE="yes"
IPV6_FAILURE_FATAL="no"
IPV6_ADDR_GEN_MODE="stable-privacy"
NAME="ens32"
DEVICE="ens32"
ONBOOT="yes"
IPADDR="192.168.171.101"
PREFIX="24"
GATEWAY="192.168.171.2"
DNS1="192.168.171.2"
IPV6_PRIVACY="no"

5. 修改hosts配置文件

vim /etc/hosts

修改内容如下:

192.168.171.101	hadoop101
192.168.171.102	hadoop102
192.168.171.103	hadoop103

重启系统 注意:如果是虚拟机环境请关机 克隆

reboot

6. 下载安装JDK和Hadoop并配置环境变量

在所有主机节点创建软件目录

mkdir -p /opt/soft 

以下操作在 hadoop101 主机上完成

进入软件目录

cd /opt/soft

下载 JDK

wget https://download.oracle.com/otn/java/jdk/8u391-b13/b291ca3e0c8548b5a51d5a5f50063037/jdk-8u391-linux-x64.tar.gz?AuthParam=1698206552_11c0bb831efdf87adfd187b0e4ccf970

下载 hadoop

wget https://dlcdn.apache.org/hadoop/common/hadoop-3.3.5/hadoop-3.3.5.tar.gz

解压 JDK 修改名称

解压 hadoop 修改名称

tar -zxvf jdk-8u391-linux-x64.tar.gz -C /opt/soft/
mv jdk1.8.0_391/ jdk-8
tar -zxvf hadoop-3.3.5.tar.gz -C /opt/soft/
mv hadoop-3.3.5/ hadoop-3

配置环境变量

vim /etc/profile.d/my_env.sh

编写以下内容:

export JAVA_HOME=/opt/soft/jdk-8
export set JAVA_OPTS="--add-opens java.base/java.lang=ALL-UNNAMED"export HDFS_NAMENODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_ZKFC_USER=root
export HDFS_JOURNALNODE_USER=root
export HADOOP_SHELL_EXECNAME=rootexport YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=rootexport HADOOP_HOME=/opt/soft/hadoop-3
export HADOOP_INSTALL=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoopexport PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

生成新的环境变量
注意:分发软件和配置文件后 在所有主机执行该步骤

source /etc/profile

7. 配置ssh免密钥登录

创建本地秘钥并将公共秘钥写入认证文件

ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
ssh-copy-id root@hadoop101
ssh-copy-id root@hadoop102
ssh-copy-id root@hadoop103
ssh root@hadoop101
exit
ssh root@hadoop102
exit
ssh root@hadoop101
exit

8. 修改配置文件

cd  $HADOOP_HOME/etc/hadoop

hadoop-env.sh

core-site.xml

hdfs-site.xml

workers

mapred-site.xml

yarn-site.xml

hadoop-env.sh

hadoop-env.sh 文件末尾追加

export JAVA_HOME=/opt/soft/jdk-8
export set JAVA_OPTS="--add-opens java.base/java.lang=ALL-UNNAMED"export HDFS_NAMENODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_ZKFC_USER=root
export HDFS_JOURNALNODE_USER=root
export HADOOP_SHELL_EXECNAME=rootexport YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

core-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>fs.defaultFS</name><value>hdfs://hadoop101:8020</value></property><property><name>hadoop.tmp.dir</name><value>/home/hadoop_data</value></property><property><name>hadoop.http.staticuser.user</name><value>root</value></property><property><name>dfs.permissions.enabled</name><value>false</value></property><property><name>hadoop.proxyuser.root.hosts</name><value>*</value></property><property><name>hadoop.proxyuser.root.groups</name><value>*</value></property>
</configuration>

hdfs.site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><!-- 指定副本数量 --><property><name>dfs.replication</name><value>3</value></property><!-- 指定 secondarynamenode 运行位置 --><property><name>dfs.namenode.secondary.http-address</name><value>hadoop102:50090</value></property>
</configuration>

workers

注意:

​ hadoop2.x中该文件名为slaves

​ hadoop3.x中该文件名为workers

hadoop101
hadoop102
hadoop103

mapred-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>mapreduce.framework.name</name><value>yarn</value></property><property><name>mapreduce.application.classpath</name><value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*:$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*</value></property><!-- yarn历史服务端口 --><property><name>mapreduce.jobhistory.address</name><value>hadoop102:10020</value></property><!-- yarn历史服务web访问端口 --><property><name>mapreduce.jobhistory.webapp.address</name><value>hadoop102:19888</value></property>
</configuration>

yarn-site.xml

<?xml version="1.0"?>
<configuration><!-- 指定YARN的主角色(ResourceManager)的地址 --><property><name>yarn.resourcemanager.hostname</name><value>hadoop103</value></property><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.nodemanager.env-whitelist</name><value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_HOME,PATH,LANG,TZ,HADOOP_MAPRED_HOME</value></property><!-- 是否将对容器实施物理内存限制 --><property><name>yarn.nodemanager.pmem-check-enabled</name><value>false</value></property><!-- 是否将对容器实施虚拟内存限制。 --><property><name>yarn.nodemanager.vmem-check-enabled</name><value>false</value></property><!-- 开启日志聚集 --><property><name>yarn.log-aggregation-enable</name><value>true</value></property><!-- 设置yarn历史服务器地址 --><property><name>yarn.log.server.url</name><value>http://hadoop102:19888/jobhistory/logs</value></property><!-- 保存的时间7天 --><property><name>yarn.log-aggregation.retain-seconds</name><value>604800</value></property>
</configuration>

9. 分发软件和配置文件

分发 ssh 免密钥

scp -r ~/.ssh root@hadoop102:~/
rsync -av --progress  ~/.ssh root@hadoop103:~/

分发 hosts 文件

rsync -v --progress /etc/hosts root@hadoop102:/etc/
rsync -v --progress /etc/hosts root@hadoop103:/etc/

分发软件

rsync -av --progress /opt/soft/jdk-8 root@hadoop102:/opt/soft
rsync -av --progress /opt/soft/hadoop-3 root@hadoop102:/opt/soft
rsync -av --progress /opt/soft/jdk-8 root@hadoop103:/opt/soft
rsync -av --progress /opt/soft/hadoop-3 root@hadoop103:/opt/soft

分发环境变量

rsync -v --progress /etc/profile.d/my_env.sh root@hadoop102:/etc/profile.d/
rsync -v --progress /etc/profile.d/my_env.sh root@hadoop103:/etc/profile.d/

在所有主机节点 使新的环境变量生效

source /etc/profile

10. 初始化集群

hadoop101

# 格式化文件系统
hdfs namenode -format
# 启动 NameNode SecondaryNameNode DataNode 
start-dfs.sh
# 查看启动进程
jps
# hadoop101 看到 NameNode DataNode
# hadoop102 看到 SecondaryNameNode DataNode
# hadoop101 看到 DataNode

hadoop103

# 启动 ResourceManager daemon 和 NodeManager
start-yarn.sh
# 查看启动进程
jps
# hadoop101 看到 NameNode DataNode NodeManager
# hadoop102 看到 SecondaryNameNode DataNode NodeManager
# hadoop101 看到 DataNode ResourceManager NodeManager

hadoop102

# 启动 JobHistoryServer
mapred --daemon start historyserver
# 查看启动进程
jps
# hadoop101 看到 NameNode DataNode NodeManager
# hadoop102 看到 SecondaryNameNode DataNode NodeManager JobHistoryServer
# hadoop101 看到 DataNode ResourceManager NodeManager

重点提示:

# 关机之前 依关闭服务
# Hadoop102
mapred --daemon stop historyserver
# hadoop103
stop-yarn.sh
# hadoop101
stop-dfs.sh
# 开机后 依次开启服务
# hadoop101
start-dfs.sh
# hadoop103
start-yarn.sh
# hadoop102
mapred --daemon start historyserver

11. 修改windows下hosts文件

C:\Windows\System32\drivers\etc\hosts

追加以下内容:

192.168.171.101	hadoop101
192.168.171.102	hadoop102
192.168.171.103	hadoop103

Windows11 注意 修改权限

  1. 开始搜索 cmd

找到命令头提示符 以管理身份运行

以管理员身份运行命令提示符cmd

命令提示符cmd

  1. 进入 C:\Windows\System32\drivers\etc 目录

    cd drivers/etc
    

    C:\Windows\System32\drivers\etc

  2. 去掉 hosts文件只读属性

    attrib -r hosts
    

    在这里插入图片描述

  3. 打开 hosts 配置文件

    start hosts
    

    C:\Windows\System32\drivers\etc

  4. 追加以下内容后保存

    192.168.171.101	hadoop101
    192.168.171.102	hadoop102
    192.168.171.103	hadoop103
    

12. 测试

12.1 浏览器访问hadoop集群

浏览器访问: http://hadoop101:9870

namnode
datanodes

浏览器访问:http://hadoop102:50090/

secondarynamenode

浏览器访问:http://hadoop103:8088

resourcemanager

浏览器访问:http://hadoop102:19888/

JobHistoryServer

12.2 测试 hdfs

本地文件系统创建 测试文件 wcdata.txt

vim wcdata.txt
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive

在 HDFS 上创建目录 /wordcount/input

hdfs dfs -mkdir -p /wordcount/input

查看 HDFS 目录结构

hdfs dfs -ls /
hdfs dfs -ls /wordcount
hdfs dfs -ls /wordcount/input

上传本地测试文件 wcdata.txt 到 HDFS 上 /wordcount/input

hdfs dfs -put wcdata.txt /wordcount/input

检查文件是否上传成功

hdfs dfs -ls /wordcount/input
hdfs dfs -cat /wordcount/input/wcdata.txt

12.2 测试 mapreduce

计算 PI 的值

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.5.jar pi 10 10

单词统计

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.5.jar wordcount /wordcount/input/wcdata.txt /wordcount/result
hdfs dfs -ls /wordcount/result
hdfs dfs -cat /wordcount/result/part-r-00000

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/179304.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于人工势场法的航线规划

GitHub - zzuwz/Artificial-Potential-Field: 2D平面下的人工势场法 GitHub - mellody11/Artificial-Potential-Field: 机器人导航--人工势场法及其改进 matlab2020a可以运行

Selenium元素定位之页面检测技巧

在进行web自动化测试的时候进行XPath或者CSS定位&#xff0c;需要检测页面元素定位是否正确&#xff0c;如果用脚本去检测&#xff0c;那么效率是极低的。 一般网上推选装额外的插件来实现页面元素定位检测 如&#xff1a;firebug。 其实F12开发者工具就能直接在页面上检测元…

linux上重启mysql

1、先关闭 [rootHIS bin]# ./mysqladmin -h 127.0.0.1 -u root -p shutdown 2、 再重启 [rootHIS support-files]# ./mysql.server start

Android开发知识学习——Kotlin基础

函数声明 声明函数要用用 fun 关键字&#xff0c;就像声明类要用 class 关键字一样 「函数参数」的「参数类型」是在「参数名」的右边 函数的「返回值」在「函数参数」右边使用 : 分隔&#xff0c;没有返回值时可以省略 声明没有返回值的函数&#xff1a; fun main(){println…

微信小程序上传图片和上传视频的组件失效

微信小程序上传图片和上传视频的组件失效 今天公司的小程序展示图片和视频文字的页面上传图片组件突然失效&#xff0c;之前用的好好的&#xff0c;突然所有使用都都发现用不了&#xff0c;以为是代码出现问题&#xff0c;反复查了很久。换了一个openid居然就可以了&#xff0…

jeecg-uniapp 转成小程序的过程 以及报错 uniapp点击事件

uniapp 点击事件 tap: 单击事件 confirm: 回车事件 blur:失去焦点事件 touchstart: 触摸开始事件 touchmove: 触摸移动事件。 touchend: 触摸结束事件。 longpress: 长按事件。 input: 输入框内容变化事件。 change: 表单元素值变化事件。 submit: 表单提交事件。 scroll: 滚动…

Seata入门系列【19】分布式事务之CAP、BASE理论

1 CAP理论 CAP是以下三个词语的缩写&#xff1a; Consistency&#xff1a;一致性Availability&#xff1a;可用性Partition tolerance&#xff1a;分区容忍性 CAP理论的基础概念就是在分布式系统中&#xff0c;无法同时满足以上三点。 下面我们以一个简单的分布式系统&…

如何提高Python图像表格数据提取的准确率?

Python图像表格数据提取 1、数据来源2、目标图像3、图像文本提取4、图像灰度化与二值化可以提高识别准确率吗1、数据来源 国家统计局:http://www.stats.gov.cn/sj/ 数据来源:国家统计局中国统计年鉴2022年人口数及构成 2、目标图像 数据(部分)如下: 数据形式:http://www…

docker打包container成image,然后将image上传到docker hub

第一步&#xff1a;停止正在运行的容器 docker stop <container_name> eg: docker stop xuanjie_mlir 第二步&#xff1a;将对应的container打包成image docker commit <container_id> <镜像名&#xff1a;版本> eg&#xff1a;docker commit 005672e6d97a…

MPLAB X IDE 仿真打断点提示已中断的断点?

这种中间带裂缝的是无效断点。 原因可能与XC编译器的优化有关&#xff0c;最后生成的汇编与C语言并不是一一对应的(官方给的解释是效率高)。所以这一行C语言转换的汇编代码可能并不在这个位置&#xff0c;也可能与其它汇编合并后根本就没有 我的解决方法是把优化等级调到最低&a…

导轨电表适不适合家用?

导轨电表&#xff0c;作为一种新型的电能计量设备&#xff0c;近年来在我国得到了广泛的应用。然而&#xff0c;对于家用市场来说&#xff0c;导轨电表是否适用仍然存在争议。那么&#xff0c;导轨电表适不适合家用呢&#xff1f;接下来&#xff0c;小编来为大家讲解下&#xf…

计算机网络第4章-网络层(1)

引子 网络层能够被分解为两个相互作用的部分&#xff1a; 数据平面和控制平面。 网络层概述 路由器具有截断的协议栈&#xff0c;即没有网络层以上的部分。 如下图所示&#xff0c;是一个简单网络&#xff1a; 转发和路由选择&#xff1a;数据平面和控制平面 网络层的作用…

精选8款UML图工具,闭眼入!

在现代软件开发领域&#xff0c;UML&#xff08;统一建模语言&#xff09;图是不可或缺的工具之一&#xff0c;用于可视化和通信复杂系统的结构和设计。然而&#xff0c;在选择合适的UML图工具时&#xff0c;你需要考虑多个因素&#xff0c;如项目规模、团队协作需求、功能复杂…

Docker dnmp 多版本php安装 php8.2

Laravel9 开发需要用到php8.1以上的版本&#xff0c;而dnmp只支持到php8.0。安装php8.2的步骤如下&#xff1a; 1. 从/services/php80目录复制一份出来&#xff0c;重命名为php82&#xff0c;extensions目录只保留 install.sh 和 install-php-extensions 这两个文件 2. 修改.en…

苹果IOS系统webglcontextlost问题-解决方案

问题描述 在IOS手机 解码视频流的时候&#xff0c;第一次可以正常播放&#xff0c;但只要IOS手机熄屏&#xff0c;再重新唤醒&#xff0c;就会一直播放失败&#xff0c;无论换哪个浏览器都不行。安卓手机则一切正常。 经过排查&#xff0c;发现 IOS手机 的浏览器会无故 webGL…

突破性技术!开源多模态模型—MiniGPT-5

多模态生成一直是OpenAI、微软、百度等科技巨头的重要研究领域&#xff0c;但如何实现连贯的文本和相关图像是一个棘手的难题。 为了突破技术瓶颈&#xff0c;加州大学圣克鲁斯分校研发了MiniGPT-5模型&#xff0c;并提出了全新技术概念“Generative Vokens "&#xff0c…

新工业革命?基于机器视觉技术分拣机器人的未来与发展

原创 | 文 BFT机器人 01 分拣机器人的应用 基于机器视觉技术的分拣机器人可以将工人从繁重的劳动中解放出来&#xff0c;大大提高了分拣的效率&#xff0c;因此被广泛地应用于食品、物流以及煤矿等多个行业。 1.1 分拣机器人在水果分拣中的应用 随着农业科技的发展和人民生活…

SOLIDWORKS参数化设计之部分打包 慧德敏学

参数化设计就是通过主参数来驱动整个模型的变化&#xff0c;类似于SOLIDWORKS的方程式中&#xff0c;使用全局变量来控制模型其它参数的变化&#xff0c;因此要做参数化就必须要确定好主参数以及变化逻辑。 我们之前介绍过SOLIDWORKS参数化设计软件-SolidKits.AutoWorks&#…

软件设计模式原则(二)开闭原则

继续讲解第二个重要的设计模式原则——开闭原则~ 一.定义 开闭原则(Open Closed Principle&#xff09;是编程中最基础、最重要的设计原则。一个软件实体如类&#xff0c;模块和函数应该对扩展开放(对提供方)&#xff0c;对修改关闭(对使用方)。用抽象构建框架&#xff0c;用实…

关于FastJSON序列化Bean时对get方法调用的细节

结论 使用JSON.toJSONString去序列化Bean的时候 FastJSON会把Bean里面的get开头&#xff0c;有返回值且没有参数的方法都调用一遍。 看代码 package org.example.domain;import lombok.Getter; import lombok.Setter;/*** program: parent_pro* description:* author: 渭水* c…