图像二值化阈值调整——cv2.threshold方法

二值化阈值调整:调整是指在进行图像二值化处理时,调整阈值的过程。阈值决定了将图像中的像素分为黑色和白色的界限,大于阈值的像素被设置为白色,小于等于阈值的像素被设置为黑色。

首先画出灰度直方图:横坐标是灰度值0—255,纵坐标是该灰度值的像素个数。

import cv2
from matplotlib import pyplot as pltimg = cv2.imread ('6.jpg', 0)  # 读取图像并转换为灰度图像
hist = cv2.calcHist([img],[0],None,[256],[0,256])  # 计算灰度直方图
plt.hist(img.ravel( ),256,[0,256])  # 绘制直方图
plt.show()

方法一:

取阈值为 127,相当于 0~255 的中位数(0+255)/2 = 127,灰度值大于等于 127 的设置为 0,灰度值大于 127 的设置为 255,这种方法简单便捷,缺点就是阈值设置的太死板了,对于不同的照片,效果肯定不同。检索资料的时候发现,还有人把这种方法称为 史上最弱智的二值处理方法,没办法,弱智方法也得学啊。

该方法会使用到一个 threshold 方法,threshold 方法的语法格式如下:

cv2.threshold(src, thresh, maxval, type[, dst]) -> retval, dst

参数说明如下:

  • src 输入图,中只能输入单通道图,一般就是灰度图;
  • thresh 阈值;
  • maxval 最大值,当像素超过了阈值(或者小于阈值)时所赋予的值;
  • type - 二值化操作的类型,有 5 种,在下文描述;
  • dst 输出数组/图像(与 src 相同大小和类型以及相同通道数的数组/图像)。

返回值 retval 阈值 thresh, dst 经过处理的图像。

二值化操作类型type参数(阈值类型):

  • 二进制阈值化   THRESH_BINARY,过门限的值为最大值,其他值为 0;
  • 反二进制阈值化   THRESH_BINARY_INV,过门限的值为 0,其他值为最大值;
  • 截断阈值化   THRESH_TRUNC,过门限的值为门限值,其他值不变;
  • 阈值化为 0   THRESH_TOZERO,过门限的值不变,其他设置为 0;
  • 反阈值化为 0   THRESH_TOZERO_INV,过门限的值为 0,其他不变。

以上内容也叫做全局阈值。参考代码:

import cv2
import matplotlib.pylab as pltdef main2():img = cv2.imread('6.jpg', 0)ret, thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)ret, thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)ret, thresh3 = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC)ret, thresh4 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)ret, thresh5 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)titles = ['Original Image', 'BINARY','BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]for i in range(6):plt.subplot(2, 3, i+1)plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()main2()

当然,也可以把代码里面的127改成别的,这就叫手动选择阈值。

方法二:

计算像素点矩阵中的所有像素点的灰度值的平均值 avg,让每一个像素点与 avg 比较,小于等于 avg 的像素点就为 0(黑色),大于 avg 的像素点为 255(白色),这种方法看起来靠谱了一些。

使用该方法之前需要先遍历图像的所有灰度值,才能计算出平均值。下图所示的阈值计算结果是151.参考代码如下:

import cv2def main():img = cv2.imread("1.TIF", 0)height, width = img.shape# 灰度值总和px_t = 0for i in range(height):for j in range(width):px_t += img[i][j]print(px_t)# 求像素平均值avg_thresh = int(px_t / (height * width))print(avg_thresh)thresh, dst = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)cv2.imshow("dst", dst)cv2.waitKey()cv2.imwrite("2.jpg",dst)if __name__ == "__main__":main()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/179414.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

React中的状态管理

目录 前言 1. React中的状态管理 1.1 本地状态管理 1.2 全局状态管理 Redux React Context 2. React状态管理的优势 总结 前言 当谈到前端开发中的状态管理时,React是一个备受推崇的选择。React的状态管理机制被广泛应用于构建大型、复杂的应用程序&#xf…

【漏洞复现】74cms任意文件读取

漏洞描述 74CMS 是一款国内用的比较多招聘网站管理系统(Job Board CMS),专注于招聘和人力资源领域的网站建设,存在任意文件读取漏洞 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律&#xff0c…

面向网络安全-Python语言

目录 1、变量 2、字符串 3、列表 4、字典 5、网络 6、条件选择语句 7、异常处理 1、变量 变量是指储存在某个内存地址上的数据 主要有:整型数、实数、布尔值、字符串、列表、元组、字典 这些数据在声明后,解释器就会自动确定每个变量的类型&…

opencv在linux上调用usb摄像头进行拍照

功能 1.按照指定的文件名创建文件夹,创建之前判断该文件夹是否存在 2.调用摄像头按可调整窗口大小的方式显示 3.按esc退出摄像头画面 4.按p保存当前摄像头的画面,并按当前时间为照片的名字进行保存打开终端查看是否有摄像头 ls /dev/video*一般video1就…

MyBatis实现多表映射、分页显示、逆向工程

目录 一、MyBatis实现多表映射 1.1 实体类设计 1.2 一对一关系实现案例 1.3 对多配置实现案例 1.4 设置自动映射与n张表关联映射 二、MyBatis实现分页功能 2.1 mybatis插件工作原理 2.2 引入插件与插件的使用 三、逆向工程插件 3.1 什么是逆向工程 3.2 MyBat…

Stable Diffusion WebUI扩展sd-webui-controlnet安装教程

话不多说,上链接: https://github.com/Mikubill/sd-webui-controlnethttps://github.com/Mikubill/sd-webui-controlnet同样,直接安装到extensions文件中。 什么conda还是python安装也不多说了,前面很多讲了如何安装,这里就不当赘婿了。 安装好后,我们最好手动安装模型…

毕马威加入IBM量子网络,已搭建完成通信行业量子电路!

毕马威全球量子中心主管Bent Dalager(图片来源:网络) 随着全球企业技术的持续转型,量子计算在开发创新解决方案上越来越重要。为此,毕马威(KPMG)公司加入了IBM量子网络,旨在利用量子计算解决当今最复杂的业…

SpringBoot可以同时处理多少请求?

前言 前两天面试的时候,面试官问我:一个ip发请求过来,是一个ip对应一个线程吗?我突然愣住了,对于SpringBoot如何处理请求好像从来没仔细思考过,所以面试结束后就仔细研究了一番,现在就来探讨一…

go语言 | grpc原理介绍(一)

参考 https://www.nowcoder.com/discuss/389810396381683712?sourceSSRsearch 这里是b站对应的csdn博客,比较详细的介绍grpc相关原理说明,首先是大概的一个流程图说明。 什么是 RPC ? 远程过程调用(RPC)是计算机科…

一文全览各种 ES 查询在 Java 中的实现

2 词条查询 所谓词条查询,也就是ES不会对查询条件进行分词处理,只有当词条和查询字符串完全匹配时,才会被查询到。  2.1 等值查询-term 等值查询,即筛选出一个字段等于特定值的所有记录。  SQL&…

LLaMA-Adapter源码解析

LLaMA-Adapter源码解析 伪代码 def transformer_block_with_llama_adapter(x, gating_factor, soft_prompt):residual xy zero_init_attention(soft_prompt, x) # llama-adapter: prepend prefixx self_attention(x)x x gating_factor * y # llama-adapter: apply zero_init…

PY32F071单片机,主频最高72 M,带一路DAC,USB

PY32F071 系列微控制器采用高性能的 32 位 ARM Cortex-M0内核,宽电压工作范围的 MCU。嵌入高达128 Kbytes flash 和 16 Kbytes SRAM 存储器,最高工作频率 72 MHz。包含多种不同封装类型多款产品。芯片集成多路 I2C、SPI、USART 等通讯外设,1 …

配置git并把本地项目连接github

一.配置git 1.下载git(Git),但推荐使用国内镜像下载(CNPM Binaries Mirror) 选好64和版本号下载,全部点下一步 下载完成后打开终端,输入 git --version 出现版本号则说明安装成功 然后继续…

C# OpenCvSharp DNN 部署L2CS-Net人脸朝向估计

效果 项目 代码 using OpenCvSharp; using OpenCvSharp.Dnn; using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Drawing2D; using System.Linq; using System.Text; using System.Windows.Forms;namespace OpenCvSharp_DNN_Demo …

MySQL中表的增删改查

目录 一、CRUD 二、新增(Create) (1)语法 (2)单行数据全列插入 (3)多行数据指定列插入 三、查询(Retrieve) (1)语法 …

swift语言下SurfGen库做的爬虫是什么样的 ?

Swift语言并没有内置的爬虫库,但是你可以使用第三方库来实现爬虫功能。其中比较常用的是Alamofire和SwiftyJSON。Alamofire是一个基于Swift语言的HTTP网络库,可以用来发送HTTP请求和接收HTTP响应。而SwiftyJSON则是一个用于处理JSON数据的Swift库&#x…

vue使用JsBarcode生成条形码

在工作中&#xff0c;有一个需求是接口返回的订单号生成条形码&#xff0c;如图&#xff1a; 1.安装依赖 yarn add jsbarcode2.引入 在script标签中引入 import JsBarcode from jsbarcode 3.使用 this.$refs.a.src的值为条形码的地址。 <template><div><img…

自定义类型结构体(下)

目录 结构体传参结构体实现位段什么是位段位段的内存分配位段的跨平台问题总结&#xff1a; 位段的应用位段使用的注意事项** 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接 &#x1f412;&#x1f412;&#x1f412; 个人主页 &#x1f978;&#x1f978;&a…

应聘遇到性格测试,怎么做才能通过?

本人xxx专业&#xff0c;最近找工作&#xff0c;总会做到性格测试题&#xff0c;好几次了&#xff0c;做完性格测试就没消息了&#xff0c;已经疯了&#xff0c;直接给跪了&#xff0c;完全找不到套路&#xff0c;都快怀疑人生了。所以想问一下&#xff0c;像这样公司的性格测试…

什么是TCY油封?

机械由无数组件协同工作以确保平稳运行&#xff0c;其中一种不可或缺的部件是油封&#xff0c;特别是TCY油封。本文旨在阐明TCY油封的应用、其重要性以及它们如何提高机械的整体效率。 TCY油封主要用于轴密封。轴是一种旋转机器元件&#xff0c;横截面通常为圆形&#xff0c;用…