python图像处理 ——图像锐化

python图像处理 ——图像锐化

  • 前言
  • 一、原理
  • 二、 空间域锐化滤波
    • 1.拉普拉斯算子(Laplacian)
    • 2.罗伯茨算子(Roberts)
    • 3.Sobel算子
    • 4.Prewitt算子
    • 5.Scharr算子
  • 三、实验对比

前言

由于收集图像数据的器件或传输图像的通道存在一些质量缺陷,或者受其他外界因素的影响,使得图像存在模糊和有噪声的情况,从而影响到图像识别工作的开展。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息主要集中在其高频部分。这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。

一、原理

图像锐化是指增强图像的边缘和细节信息,使图像看起来更加清晰和生动。其原理主要是减小图像中像素值相对差异较小的区域,增加像素值相对差异较大的区域。一般而言,锐化处理的方法主要分为两类:增强高频信息和抑制低频信息

增强高频信息的方法主要是通过使用高通滤波器来实现,例如使用SobelLaplacian等滤波器。这些滤波器可以增强图像中的高频信息,即边缘和细节信息,使其更加明显和突出。

抑制低频信息的方法主要是通过使用平滑滤波器来实现,例如使用均值高斯等滤波器。这些滤波器可以减小图像中的低频信息,使其更加平滑和模糊,从而突出高频信息。

二、 空间域锐化滤波

图像模糊通过平滑(加权平均)来实现,类似于积分运算。图像锐化则通过微分运算(有限差分)实现,使用一阶微分或二阶微分都可以得到图像灰度的变化值。

图像锐化的目的是增强图像的灰度跳变部分,使模糊的图像变得清晰。图像锐化也称为高通滤波,通过和增强高频,衰减和抑制低频。图像锐化常用于电子印刷、医学成像和工业检测。

恒定灰度区域,一阶导数为零,二阶导数为零;
1.灰度台阶或斜坡起点区域,一阶导数非零,,二阶导数非零;
2.灰度斜坡区域,一阶导数非零,二阶导数为零。
3.图像梯度提取方法简单直接,能够有效的描述图像的原始状态,因此发展出多种图像梯度算子:Roberts、Prewitt、Sobel、Laplacian、Scharr。

1.拉普拉斯算子(Laplacian)

Laplacian算子是一种用于图像处理和计算机视觉的数学运算符。它是二阶导数算子的一种,可以用于检测图像中的边缘和纹理等特征。在离散形式下,Laplacian算子可以表示为:

Δ f ( x , y ) = f ( x − 1 , y ) + f ( x + 1 , y ) + f ( x , y − 1 ) + f ( x , y + 1 ) − 4 f ( x , y ) \Delta f(x,y) = f(x-1,y) + f(x+1,y) + f(x,y-1) + f(x,y+1) - 4f(x,y) Δf(x,y)=f(x1,y)+f(x+1,y)+f(x,y1)+f(x,y+1)4f(x,y)

其中 f ( x , y ) f(x,y) f(x,y) 是图像在 ( x , y ) (x,y) (x,y) 处的像素值, Δ f ( x , y ) \Delta f(x,y) Δf(x,y) 是Laplacian算子在 ( x , y ) (x,y) (x,y) 处应用后的结果。

Laplacian算子可以通过卷积运算来实现。在二维情况下,它通常被表示为以下的卷积核:

在这里插入图片描述

2.罗伯茨算子(Roberts)

Roberts算子是一种边缘检测算子,主要用于图像处理中的锐化和边缘检测。它是一种离散空间滤波器,可以检测图像中的垂直和水平边缘。

Roberts算子可以表示为两个卷积核,一个用于检测水平边缘,另一个用于检测垂直边缘。

在这里插入图片描述
如公式所示,分别表示图像的水平方向和垂直方向的计算公式。

在这里插入图片描述
Roberts算子像素的最终计算公式如下:

在这里插入图片描述
在Python中,Roberts算子主要通过Numpy定义模板,再调用OpenCV的filter2D()函数实现边缘提取。该函数主要是利用内核实现对图像的卷积运算,其函数原型如下所示:网址:yii666.com

dst = filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])
– src表示输入图像
– dst表示输出的边缘图,其大小和通道数与输入图像相同
ddepth表示目标图像所需的深度
kernel表示卷积核,一个单通道浮点型矩阵
anchor表示内核的基准点,其默认值为(-1,-1),位于中心位置
delta表示在储存目标图像前可选的添加到像素的值,默认值为0
borderType表示边框模式

在进行Roberts算子处理之后,还需要调用convertScaleAbs()函数计算绝对值,并将图像转换为8位图进行显示。其算法原型如下:

dst = convertScaleAbs(src[, dst[, alpha[, beta]]])
src表示原数组
dst表示输出数组,深度为8位
alpha表示比例因子
beta表示原数组元素按比例缩放后添加的值
最后调用addWeighted()函数计算水平方向和垂直方向的Roberts算子。其运行代码如下:

3.Sobel算子

Sobel算子是一种边缘检测算子,常用于图像处理中。它可以检测图像中的水平和垂直边缘,并将它们分别表示为两个图像。这个算子是由Irwin Sobel于1968年提出的,可以用于提取图片中平滑区域与纹理区域之间的边界。

Sobel算子的原理是利用了图像像素点之间的差异来检测边缘。具体而言,Sobel算子将每个像素点周围的8个像素点加权求和,来检测该点周围像素的强度变化,从而确定像素点是否属于边缘。

Sobel算子分为水平与垂直两个方向:

在水平方向上,Sobel算子的卷积核如下:

   -1  -2  -10   0   01   2   1

在垂直方向上,Sobel算子的卷积核如下:

  -1   0  +1 -2   0  +2 -1   0  +1 

4.Prewitt算子

Prewitt是一种图像边缘检测的微分算子,其原理是利用特定区域内像素灰度值产生的差分实现边缘检测。由于Prewitt算子采用3×3模板对区域内的像素值进行计算,而Robert算子的模板为2×2,故Prewitt算子的边缘检测结果在水平方向和垂直方向均比Robert算子更加明显。Prewitt算子适合用来识别噪声较多、灰度渐变的图像,其计算公式如下所示。

在这里插入图片描述
具体的水平和垂直方向计算公式如下所示:

在这里插入图片描述
Prewitt算子像素的最终计算如公式所示。
在这里插入图片描述

5.Scharr算子

Scharr 算子也称为 Scharr 滤波器,计算 x 轴或 y 轴方向的图像差分。

Scharr 算子是 Soble 算子在 ksize=3 时的优化,与 Soble 的速度相同,且精度更高。Scharr 算子与 Sobel 算子的不同点是在平滑部分,其中心元素占的权重更重,相当于使用较小标准差的高斯函数,也就是更瘦高的模板。

Scharr 算子的卷积核为:
在这里插入图片描述
Scharr 算子很容易通过卷积操作 cv.filter2D 实现,OpenCV 也提供了函数 cv.Scharr 实现 Scharr 算子。

三、实验对比

选择一张模糊图像,将下列代码中的Laplace_kernel

cv2.filter2D(img, -1, Laplace_kernel)

替换成不同的卷积核,既可以完成锐化处理

import cv2
import numpy as np
from matplotlib import pyplot as plt# 读取图像
img = cv2.imread('girl.png')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# ===============================拉普拉斯算子锐化============================
Laplace_kernel = np.array([[-1,-1,-1],[-1, 9,-1],[-1,-1,-1]], dtype=np.float32)  # 定义拉普拉斯算子# 应用锐化卷积核
Laplace_img = cv2.filter2D(img, -1, Laplace_kernel)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/183328.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C/C++】什么是POD(Plain Old Data)类型

2023年11月6日,周一下午 目录 POD类型的定义标量类型POD类型的特点POD类型的例子整数类型:C 风格的结构体:数组:C 风格的字符串:std::array:使用 memcpy 对 POD 类型进行复制把POD类型存储到文件中,并从文…

idea中配置spring boot单项目多端口启动

参照文章 https://zhuanlan.zhihu.com/p/610767685 项目配置如下 下面为 idea 2023,不同版本的设置有区别,但是没那么大,idea 2023默认使用新布局,切换为经典布局即可。 在项目根目录的.idea/workspace.xml文件里添加如下配置 &l…

紫光同创FPGA编写的8画面分割器演示

适用于板卡型号: 紫光同创PGL50H开发平台(盘古50K开发板) 图(1) 盘古50K开发板 TOP 层逻辑框 图(2) TOP层逻辑框 video_copy_ux 将输入的一路RGB888信号复制成8份,每份画面内容相同,各路颜色有些差异: 第…

Linux重定向和缓冲区

文章目录 知识回顾&取地址重定向 重定向底层文件描述符分配规则dup2标准输出和标准错误的区别 缓冲区缓冲区总结 知识回顾 我们在之前有了解过输出重定向>, >>,可以让echo命令本来是打印到屏幕上而变成了把这些数据写到文件中,并且可以追加或者覆盖文…

力扣370周赛 -- 第三题(树形DP)

该题的方法,也有点背包的意思,如果一些不懂的朋友,可以从背包的角度去理解该树形DP 问题 题解主要在注释里 //该题是背包问题树形dp问题的结合版,在树上解决背包问题 //背包问题就是选或不选当前物品 //本题求的是最大分数 //先转…

HTML_案例1_注册页面

用纯html页面&#xff0c;不用css画一个注册页面。 最终效果如下&#xff1a; html页面代码如下&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>注册页面</title> </head>…

明御安全网关任意文件上传漏洞复现

简介 安恒信息明御安全网关(NGFW) 秉持安全可视、简单有效的理念&#xff0c;以资产为视角的全流程防御的下一代安全防护体系&#xff0c;并融合传统防火墙、入侵防御系统、防病毒网关、上网行为管控、VPN网关、威胁情报等安全模块于一体的智慧化安全网关。 较低版本的系统存…

Vue、fabricJS 画布实现自由绘制折线

作者GitHub&#xff1a;https://github.com/gitboyzcf 有兴趣可关注 Vue3代码&#xff0c;Vue2相似改吧改吧 前言 Fabric.js Fabric.js&#xff08;英文官网&#xff09;是一个强大而简单的 Javascript HTML5画布库&#xff08;也就是针对canvas进行的封装操作&#xff0c;使…

CentOS/RHEL7环境下更改网卡名称为CentOS6的传统命名规则

图片 CentOS/RHEL7网卡命名规则介绍 图片 传统的Linux服务器网卡的名称命名方式是从eth0,eth1,eth2....这种方式命名的&#xff0c;但是这个编号往往不一定准确对应网卡接口的物理顺序&#xff0c;常规模式下我们使用的服务器设备可能只有一张网卡&#xff0c;若网卡较多的情…

2023年中国金融控股公司研究报告

第一章 行业概况 1.1 定义 金融控股公司这一术语最初源自美国&#xff0c;特别是在美国的《金融服务法案》关于银行控股公司组织结构的条文中&#xff0c;首次出现了“金融控股公司”&#xff08;Financial Holding Company&#xff09;这一法律术语&#xff0c;尽管法案中并…

Flink SQL DataGen Connector 示例

Flink SQL DataGen Connector 示例 1、概述 使用 Flink SQL DataGen Connector&#xff0c;可以快速地生成符合规则的测试数据&#xff0c;可以在不依赖真实数据的情况下进行开发和测试。 2、使用示例 创建一个名为 “users” 的表&#xff0c;包含 6 个字段&#xff1a;id…

力扣 138. 随机链表的复制

题目描述&#xff1a; 给你一个长度为 n 的链表&#xff0c;每个节点包含一个额外增加的随机指针 random &#xff0c;该指针可以指向链表中的任何节点或空节点。 构造这个链表的 深拷贝。 深拷贝应该正好由 n 个 全新 节点组成&#xff0c;其中每个新节点的值都设为其对应的…

newstarctf2022week2

Word-For-You(2 Gen) 和week1 的界面一样不过当时我写题的时候出了个小插曲 连接 MySQL 失败: Access denied for user rootlocalhost 这句话印在了背景&#xff0c;后来再进就没了&#xff0c;我猜测是报错注入 想办法传参 可以看到一个name2,试着传参 发现有回显三个字段…

ESP-IDF-V5.1.1使用websocket

IDF Component Registry (espressif.com) 在windows系统中&#xff0c;在项目目录下使用命令 idf.py add-dependency "espressif/esp_websocket_client^1.1.0"

【手册上新】迅为RK3588开发板多屏显示手册

iTOP-RK3588开发板采用四核Cortex-A76处理器和Cortex-A55架构&#xff0c;芯片内置VOP控制器&#xff0c;最多可以支持7个屏幕显示&#xff0c;支持HDMI、LVDS、MIPI、EDP四种显示接口的多屏同显、异显和异触&#xff0c;可有效提高行业定制的拓展性。 iTOP-RK3588开发板支持以…

Java中访问修饰符

类和类之间的关系有如下几种: 以Hero为例自身&#xff1a;指的是Hero自己同包子类&#xff1a;ADHero这个类是Hero的子类&#xff0c;并且和Hero处于同一个包下不同包子类&#xff1a;Support这个类是Hero的子类&#xff0c;但是在另一个包下同包类&#xff1a; GiantDragon 这…

EasyExcel实现动态表头功能

EasyExcel实现动态表头功能 开发过程中&#xff0c;大部分都会使用到导出报表功能&#xff0c;目前阶段会用得有 poi导出&#xff08;暂无&#xff09;&#xff0c; easyexcel导出&#xff08;官方文档&#xff0c;https://easyexcel.opensource.alibaba.com/docs/current/&am…

Linux 实现原理 — NUMA 多核架构中的多线程调度开销与性能优化

前言 NOTE&#xff1a;本文中所指 “线程” 均为可执行调度单元 Kernel Thread。 NUMA 体系结构 NUMA&#xff08;Non-Uniform Memory Access&#xff0c;非一致性存储器访问&#xff09;的设计理念是将 CPU 和 Main Memory 进行分区自治&#xff08;Local NUMA node&#x…

EPLAN-P8软件技术分享文章

EPLAN公司成立于1984年德国。EPLAN最初的产品是基于DOS平台&#xff0c;然后经历了Windows3.1、Windows95、Windows98、Windows2000、Windows Vista等、Windows7、Windows8等平台发展历史。EPLAN是以电气设计为基础的跨专业的设计平台&#xff0c;包括电气设计、流体设计、仪表…