MySQL复习总结(二):进阶篇(索引)

文章目录

  • 一、存储引擎
    • 1.1 MySQL体系结构
    • 1.2 存储引擎介绍
    • 1.3 存储引擎特点
    • 1.4 存储引擎选择
  • 二、索引
    • 2.1 基本介绍
    • 2.2 索引结构
    • 2.3 索引分类
    • 2.4 索引语法
    • 2.5 SQL性能分析
    • 2.6 索引使用
      • 2.6.1 最左前缀法则
      • 2.6.2 范围查询
      • 2.6.3 索引失效情况
      • 2.6.4 SQL提示
      • 2.6.5 覆盖索引
      • 2.6.6 前缀索引
      • 2.6.7 单列索引与联合索引
    • 2.7 索引设计原则

一、存储引擎

1.1 MySQL体系结构

在这里插入图片描述
1). 连接层

最上层是一些客户端和链接服务,包含本地sock
通信和大多数基于客户端/服务端工具实现的类似于TCP/IP的通信。主要完成一些类似于连接处理、授权认证、及相关的安全方案。在该层上引入了线程池的概念,为通过认证安全接入的客户端提供线程。同样在该层上可以实现基于SSL的安全链接。服务器也会为安全接入的每个客户端验证它所具有的操作权限。

2). 服务层

第二层架构主要完成大多数的核心服务功能,如SQL接口,并完成缓存的查询,SQL的分析和优化,部分内置函数的执行。所有跨存储引擎的功能也在这一层实现,如过程、函数等。在该层,服务器会解析查询并创建相应的内部解析树,并对其完成相应的优化如确定表的查询的顺序,是否利用索引等,最后生成相应的执行操作。如果是select语句,服务器还会查询内部的缓存,如果缓存空间足够大,这样在解决大量读操作的环境中能够很好的提升系统的性能。

3). 引擎层

存储引擎层,存储引擎真正的负责了MySQL中数据的存储和提取,服务器通过API和存储引擎进行通信。不同的存储引擎具有不同的功能,这样我们可以根据自己的需要,来选取合适的存储引擎。数据库中的索引是在存储引擎层实现的。

4). 存储层

数据存储层,主要是将数据(如:redolog、undolog、数据、索引、二进制日志、错误日志、查询日志、慢查询日志等)存储在文件系统之上,并完成与存储引擎的交互。和其他数据库相比,MySQL有点与众不同,它的架构可以在多种不同场景中应用并发挥良好作用。主要体现在存储引擎上,插件式的存储引擎架构,将查询处理和其他的系统任务以及数据的存储提取分离。这种架构可以根据业务的需求和实际需要选择合适的存储引擎。


1.2 存储引擎介绍

对于存储引擎,它是mysql数据库的核心,我们也需要在合适的场景选择合适的存储引擎。接下来就来介绍一下存储引擎:

存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式。存储引擎是基于表的,而不是基于库的,所以存储引擎也可被称为表类型。我们可以在创建表的时候,来指定选择的存储引擎,如果没有指定将自动选择默认的存储引擎。

建表时指定存储引擎:

CREATE TABLE 表名(
字段1 字段1类型 [ COMMENT 字段1注释 ] ,
......
字段n 字段n类型 [COMMENT 字段n注释 ]
) ENGINE = INNODB [ COMMENT 表注释 ] ;

查询当前数据库支持的存储引擎:

show engines; 

在这里插入图片描述


1.3 存储引擎特点

重点介绍三种存储引擎InnoDBMyISAMMemory的特点。

先来重点看看InnoDB引擎。

1). 介绍
InnoDB是一种兼顾高可靠性和高性能的通用存储引擎,在 MySQL 5.5 之后,InnoDB是默认的MySQL 存储引擎。


2). 特点

  • DML操作遵循ACID模型,支持事务
    行级锁,提高并发访问性能;
    支持外键FOREIGN KEY约束,保证数据的完整性和正确性;

3). 文件
xxx.ibd:xxx代表的是表名,innoDB引擎的每张表都会对应这样一个表空间文件,存储该表的表结构、数据和索引。

show variables like 'innodb_file_per_table';#查看是否开启

在这里插入图片描述
如果该参数开启,代表对于InnoDB引擎的表,每一张表都对应一个ibd文件。 我们直接打开MySQL的数据存放目录: C:\ProgramData\MySQL\MySQL Server 8.0\Data , 这个目录下有很多文件夹,不同的文件夹代表不同的数据库,随便打开一个数据库文件夹。

在这里插入图片描述
这些文件是基于二进制存储的,不能直接基于记事本打开,我们可以使用mysql提供的一
个指令ibd2sdi,通过该指令就可以从ibd文件中提取sdi信息,而sdi数据字典信息中就包含该表的表结构。
在这里插入图片描述


4). 逻辑存储结构
在这里插入图片描述

  • 表空间 : InnoDB存储引擎逻辑结构的最高层,ibd文件其实就是表空间文件,在表空间中可以包含多个Segment段。
  • 段 : 表空间是由各个段组成的,常见的段有数据段、索引段、回滚段等。InnoDB中对于段的管理,都是引擎自身完成,不需要人为对其控制,一个段中包含多个区。
  • 区 : 区是表空间的单元结构,每个区的大小为1M。 默认情况下, InnoDB存储引擎页大小为16K, 即一个区中一共有64个连续的页。
  • 页 : 页是组成区的最小单元,页也是InnoDB 存储引擎磁盘管理的最小单元,每个页的大小默认为16KB。为了保证页的连续性,InnoDB 存储引擎每次从磁盘申请 4-5 个区。
  • 行 : InnoDB 存储引擎是面向行的,也就是说数据是按行进行存放的,在每一行中除了定义表时所指定的字段以外,还包含两个隐藏字段。

再来简单看看MyISAM引擎。

1). 介绍
MyISAM是MySQL早期的默认存储引擎。


2). 特点

  • 不支持事务,不支持外键
    支持表锁,不支持行锁
    访问速度快

3). 文件
xxx.sdi:存储表结构信息
xxx.MYD: 存储数据
xxx.MYI: 存储索引

在这里插入图片描述


最后简单来看看Memory引擎。

1). 介绍
Memory引擎的表数据时存储在内存中的,由于受到硬件问题、或断电问题的影响,只能将这些表作为临时表或缓存使用。

2). 特点
内存存放
hash索引(默认)

3).文件
xxx.sdi:存储表结构信息


三者的区别与联系:
在这里插入图片描述

1.4 存储引擎选择

在选择存储引擎时,应该根据应用系统的特点选择合适的存储引擎。对于复杂的应用系统,还可以根据实际情况选择多种存储引擎进行组合。

  • InnoDB: 是Mysql的默认存储引擎,支持事务、外键。如果应用对事务的完整性有比较高的要求,在并发条件下要求数据的一致性,数据操作除了插入和查询之外,还包含很多的更新、删除操作,那么InnoDB存储引擎是比较合适的选择。
  • MyISAM:如果应用是以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完整性、并发性要求不是很高,那么选择这个存储引擎是非常合适的。
  • MEMORY:将所有数据保存在内存中,访问速度快,通常用于临时表及缓存。MEMORY的缺陷就是对表的大小有限制,太大的表无法缓存在内存中,而且无法保障数据的安全性。

二、索引

2.1 基本介绍

索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。

在这里插入图片描述
表如上图所示,假如我们要执行的SQL语句为:select * from user where age = 45;在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为全表扫描,性能很低。

但如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段建立一个二叉树的索引结构。

在这里插入图片描述
此时我们再进行查询时,只需要扫描三次就可以找到数据了,极大的提高的查询的效率。

优缺点:
在这里插入图片描述


2.2 索引结构

2.2.1:概述
MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:

在这里插入图片描述

上述是MySQL中所支持的所有的索引结构,接下来,我们再来看看不同的存储引擎对于索引结构的支持情况。

在这里插入图片描述


2.2.2:二叉树
在这里插入图片描述
如图所示,如果选择二叉树作为索引结构,会存在以下缺点:

  • 顺序插入时,会形成一个链表,查询性能大大降低。
    大数据量情况下,层级较深,检索速度慢。

由于红黑树也是一颗二叉树,所以也会存在一个缺点:大数据量情况下,层级较深,检索速度慢。


2.2.3:B-Tree

所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree,那么什么是B+Tree呢?在详解B+Tree之前,先来介绍一个B-Tree。

B树是一种多路平衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。

插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88
120 268 250 。

在这里插入图片描述
特点:

  • 5阶的B树,每一个节点最多存储4个key,对应5个指针。
    一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。
    在B树中,非叶子节点和叶子节点都会存放数据

2.2.4:B+Tree

在这里插入图片描述

  • 绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。
    红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。

仍然插入上面的数据。
在这里插入图片描述
B+Tree 与 B-Tree相比,主要有以下三点区别:

  • 所有的数据都会出现在叶子节点。
    叶子节点形成一个单向链表。
    非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的

上述我们所看到的结构是标准的B+Tree的数据结构,接下来,我们再来看看MySQL中优化之后的B+Tree。MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。

在这里插入图片描述


2.2.5:Hash
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。

在这里插入图片描述
特点:

  • Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,…)
    无法利用索引完成排序操作
    查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+tree索引

存储引擎支持:

  • 在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。

2.3 索引分类

在MySQL数据库,将索引的具体类型主要分为以下几类:主键索引唯一索引常规索引全文索引

在这里插入图片描述

聚集索引&二级索引:

在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:

在这里插入图片描述
聚集索引选取规则:

  • 如果存在主键,主键索引就是聚集索引。
    如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
    如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。

聚集索引和二级索引的具体结构如下:

在这里插入图片描述
由上图可知:

  • 聚集索引的叶子节点下挂的是这一行的数据 。
    二级索引的叶子节点下挂的是该字段值对应的主键值。

接下来,我们来分析一下,当我们执行如下的SQL语句时,具体的查找过程是什么样子的。

在这里插入图片描述
具体过程如下:

  • 由于是根据name字段进行查询,所以先根据name='Arm’到name字段的二级索引中进行匹配查找。但是在二级索引中只能查找到 Arm 对应的主键值 10。
    由于查询返回的数据是*,所以此时,还需要根据主键值10,到聚集索引中查找10对应的记录,最终找到10对应的行row。
    最终拿到这一行的数据,直接返回即可,这种方式叫做回表查询

2.4 索引语法

创建索引:

CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name (index_col_name,... ) ;

查看索引:

SHOW INDEX FROM table_name ;

删除索引:

DROP INDEX index_name ON table_name ;

案例演示:

# name字段为姓名字段,该字段的值可能会重复,为该字段创建索引
mysql> create index idx_user_name on tb_user(name);
# phone手机号字段的值,是非空,且唯一的,为该字段创建唯一索引
mysql> create unique index idx_user_phone on tb_user(phone);
# 为profession、age、status创建联合索引
mysql> create index idx_user_pro_age_sta on tb_user(profession,age,status);
# 为email建立合适的索引来提升查询效率
mysql> create index idx_email on tb_user(email);
# 查看tb_user表的所有的索引数据
mysql> show index from tb_user;

在这里插入图片描述


2.5 SQL性能分析

2.5.1 SQL执行频率

通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:

-- session 是查看当前会话 ;
-- global 是查询全局数据 ;
SHOW GLOBAL STATUS LIKE 'Com_______';

在这里插入图片描述


2.5.2 慢查询日志

慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。
MySQL的慢查询日志默认没有开启,我们可以查看一下系统变量 slow_query_log。

# 查看慢查询日志记录是否开启
mysql> show variables like 'slow_query_log';

在这里插入图片描述
如果要开启慢查询日志,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:

# 开启MySQL慢日志查询开关
slow_query_log=1
# 设置慢日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
long_query_time=2

开启后,我们可以通过下面的语句来对慢查询进行监督:

[root@localhost mysql]# cat /var/lib/mysql/localhost-slow.log 
/usr/sbin/mysqld, Version: 8.0.26 (MySQL Community Server - GPL). started with:
Tcp port: 3306  Unix socket: /var/lib/mysql/mysql.sock
Time                 Id Command    Argument
[root@localhost mysql]# tail -f localhost-slow.log 

2.5.3 profile详情

# 查看当前MySQL是否支持profile操作:
SELECT @@have_profiling ;
# 查看当前profiling的值
SELECT @@profiling ;
# 通过set语句在session/global级别开启profiling
SET profiling = 1;

在这里插入图片描述

-- 查看每一条SQL的耗时基本情况
show profiles;
-- 查看指定query_id的SQL语句各个阶段的耗时情况
show profile for query query_id;
-- 查看指定query_id的SQL语句CPU的使用情况
show profile cpu for query query_id;

在这里插入图片描述


2.5.4 explain

EXPLAIN 或者 DESC命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序。

在这里插入图片描述
在这里插入图片描述
Explain 执行计划中各个字段的含义:

字段含义
idselect查询的序列号,表示查询中执行select子句或者是操作表的顺序(id相同,执行顺序从上到下;id不同,值越大,越先执行)。
select_type表示 SELECT 的类型,常见的取值有 SIMPLE(简单表,即不使用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION 中的第二个或者后面的查询语句)、SUBQUERY(SELECT/WHERE之后包含了子查询)等
type表示连接类型,性能由好到差的连接类型为NULL、system、const、eq_ref、ref、range、 index、all
possible_key显示可能应用在这张表上的索引,一个或多个
key实际使用的索引,如果为NULL,则没有使用索引
key_len表示索引中使用的字节数, 该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下, 长度越短越好
rowsMySQL认为必须要执行查询的行数,在innodb引擎的表中,是一个估计值,可能并不总是准确的
filtered表示返回结果的行数占需读取行数的百分比, filtered 的值越大越好

2.6 索引使用

2.6.1 最左前缀法则

如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)

以 tb_user 表为例,我们先来查看一下之前 tb_user 表所创建的索引。

在这里插入图片描述

对于最左前缀法则指的是,查询时,最左边的列,也就是profession必须存在,否则索引全部失效。而且中间不能跳过某一列,否则该列后面的字段索引将失效。

在这里插入图片描述
以上的这三组测试中,我们发现只要联合索引最左边的字段 profession存在,索引就会生效,只不过索引的长度不同。 而且由以上三组测试,我们也可以推测出profession字段索引长度为47、age字段索引长度为2、status字段索引长度为5。


在这里插入图片描述
通过上面的这两组测试,我们也可以看到索引并未生效,原因是因为不满足最左前缀法则,联合索引最左边的列profession不存在。


在这里插入图片描述
上述的SQL查询时,存在profession字段,最左边的列是存在的,索引满足最左前缀法则的基本条件。但是查询时,跳过了age这个列,所以后面的列索引是不会使用的,也就是索引部分生效,所以索引的长度就是47。


在这里插入图片描述
当查询字段顺序发生改变时,我们可以看到,是完全满足最左前缀法则的,索引长度54,联合索引是生效的。即:最左前缀法则中指的最左边的列,是指在查询时,联合索引的最左边的字段(即是第一个字段)必须存在,与我们编写SQL时,条件编写的先后顺序无关


2.6.2 范围查询

联合索引中,出现范围查询(>,<),范围查询右侧的列索引失效。

在这里插入图片描述
当范围查询使用> 或 < 时,走联合索引了,但是索引的长度为49,就说明范围查询右边的status字段是没有走索引的。


在这里插入图片描述
当范围查询使用>= 或 <= 时,走联合索引了,但是索引的长度为54,就说明所有的字段都是走索引的。所以,在业务允许的情况下,尽可能的使用类似于 >= 或 <= 这类的范围查询,而避免使用 > 或 <。


2.6.3 索引失效情况

失效方式一:索引列运算

不要在索引列上进行运算操作, 索引将失效。

在这里插入图片描述


失效方式二:字符串不加引号

字符串类型字段使用时,不加引号,索引将失效。

在这里插入图片描述


失效方式三:模糊查询

如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。

在这里插入图片描述
经过上述的测试,我们发现,在like模糊查询中,在关键字后面加%,索引可以生效。而如果在关键字前面加了%,索引将会失效。


失效方式四:or连接条件

用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。

在这里插入图片描述
由于age没有索引,所以即使id有索引,索引也会失效,所以需要针对于age也要建立索引。


失效方式五:数据分布影响

如果MySQL评估使用索引比全表更慢,则不使用索引。

在这里插入图片描述
经过测试我们发现,相同的SQL语句,只是传入的字段值不同,最终的执行计划也完全不一样,这是为什么呢?就是因为MySQL在查询时,会评估使用索引的效率与走全表扫描的效率,如果走全表扫描更快,则放弃索引,走全表扫描。 因为索引是用来索引少量数据的,如果通过索引查询返回大批量的数据,则还不如走全表扫描来的快,此时索引就会失效。


2.6.4 SQL提示

SQL提示,是优化数据库的一个重要手段,简单来L语句中加入一些人为的提示来达到优
化操作的目的。

  • use index : 建议MySQL使用哪一个索引完成此次查询(仅仅是建议,mysql内部还会再次进行评估)
explain select * from tb_user use index(idx_user_pro) where profession = '软件工程';
  • ignore index : 忽略指定的索引
explain select * from tb_user ignore index(idx_user_pro) where profession = '软件工程';
  • force index : 强制使用索引
explain select * from tb_user force index(idx_user_pro) where profession = '软件工程';

2.6.5 覆盖索引

尽量使用覆盖索引,减少select *。 那么什么是覆盖索引呢? 覆盖索引是指 查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到。

在这里插入图片描述
从上述的执行计划我们可以看到,这些SQL语句的执行计划前面所有的指标都是一样的,看不出来差异。但是此时,我们主要关注的是后面的Extra,第一条SQL的结果为 Using where; UsingIndex ; 而后面两条SQL的结果为: Using index condition

在这里插入图片描述
在这里插入图片描述


2.6.6 前缀索引

当字段类型为字符串(varchar,text,longtext等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO, 影响查询效率。此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。

语法:

create index idx_xxxx on table_name(column(n)) ;

示例:

# 为tb_user表的email字段,建立长度为5的前缀索引。
create index idx_email_5 on tb_user(email(5)); 

在这里插入图片描述


前缀长度:

可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高, 唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。

select count(distinct email) / count(*) from tb_user ;
select count(distinct substring(email,1,5)) / count(*) from tb_user ;

前缀索引的查询流程:

在这里插入图片描述


2.6.7 单列索引与联合索引

单列索引:即一个索引只包含单个列。
联合索引:即一个索引包含了多个列。

在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引,避免回表查询。

如果查询使用的是联合索引,具体的结构示意图如下:

在这里插入图片描述


2.7 索引设计原则

  • 针对于数据量较大,且查询比较频繁的表建立索引。
  • 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引。
  • 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
  • 如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。
  • 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。
  • 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率。
  • 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/183520.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux中if条件判断,case...esac,function学习

第一、 if [ 判断式 ] ; then fi 注意&#xff1a;中括号和判断式之间的空格&#xff0c;否则会报错&#xff0c;上案例 第二个图的12行&#xff0c;中括号和条件判断如果没有空格&#xff0c;则会提示缺号‘】’&#xff0c;如第二个图最上面的提示。所以使用中括号的格式…

ts学习01-开发环境搭建

环境 nodejs 18 npm 安装typescript npm install typescript # 如果上面太慢&#xff0c;可以执行下面的方法 npm install typescript --registryhttps://registry.npm.taobao.orgHelloWorld 新建index.ts console.log("hello ts");执行下面命令进行编译 npx t…

GPT-4V:AI在教育领域的应用

OpenAI于9月25日发布了最新的GPT-4V模型&#xff0c;为ChatGPT引入了语音和图像功能&#xff0c;为用户提供更多元化的使用方式。这次更新将为用户带来更便捷、直观的交互体验&#xff0c;用户可以直接拍照上传并针对照片内容提出问题。OpenAI的最终目标是构建安全、有益的人工…

2.3 - 网络协议 - ICMP协议工作原理,报文格式,抓包实战

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 ICMP协议 1、ICMP协议工作原理2、ICMP协议报文格式…

Linux网络编程04

更高效的零拷贝 发送方过程零拷贝 sendfile 发送文件方的零拷贝&#xff0c;虽然之前我们就可以使用mmap来实现零拷贝但是存在一个方法sendfile也可以直接实现数据从内核区发送到网络发送区socket 直接把内核里面你的文件数据不经过用户态&#xff0c;直接发送给另外一个文件…

如何对ppt文件设置修改权限?

PPT文件会应用在会议、演讲、课件等工作生活中&#xff0c;当我们制作好了PPT之后&#xff0c;保护内容防止在演示时出错是很重要的&#xff0c;那么如何将PPT文件设置成禁止修改模式呢&#xff1f;今天分享几个方法给大家。 方法一 将PPT文件直接保存或者另存为一份文件&…

C++入门学习(1)命名空间和输入输出

前言 在C语言和基本的数据结构学习之后&#xff0c;我们终于迎来了期待已久的C啦&#xff01;C发明出来的意义就是填补一些C语言的不足&#xff0c;让我们更加方便的写代码&#xff0c;所以今天我们就来讲一下C语言不足的地方和在C中的解决办法&#xff01; 一、命名空间 在学习…

前端框架Vue学习 ——(五)前端工程化Vue-cli脚手架

文章目录 Vue-cliVue项目-创建Vue项目-目录结构Vue项目-启动Vue项目-配置端口Vue项目开发流程 Vue-cli 介绍&#xff1a;Vue-cli 是 Vue 官方提供的一个脚手架&#xff0c;用于快速生成一个 Vue 的项目模版 安装 NodeJS安装 Vue-cli npm install -g vue/cliVue项目-创建 图…

嬴图 | LLM+Graph:大语言模型与图数据库技术的协同

前言 2022年11月以来&#xff0c;大语言模型席卷全球&#xff0c;在自然语言任务中表现卓越。尽管存在一系列伦理、安全等方面的担心&#xff0c;但各界对该技术的热情和关注并未减弱。 本文不谈智能伦理方面的问题&#xff0c;仅集中于Ulitpa嬴图在应用中的一些探索与实践&a…

01-单节点部署clickhouse及简单使用

1、下载rpm安装包&#xff1a; 官网&#xff1a;https://packages.clickhouse.com/rpm/stable/ clickhouse19.4版本之后只需下载3个rpm安装包&#xff0c;上传到节点目录即可 2、rpm包安装&#xff1a; 安装顺序为conmon->server->client 执行 rpm -ivh ./clickhouse-…

【深度学习 AIGC】stable diffusion webUI 使用过程,参数设置,教程,使用方法

文章目录 docker快速启动vae.ckpt或者.safetensorsCFG指数/CFG Scale面部修复/Restore facesRefinerTiled VAEClip Skipprompt提示词怎么写roop Upscaler visibility (if scale 1) docker快速启动 如果你想使用docker快速启动这个项目&#xff0c;你可以按下面这么操作&#…

(Git)git clone报错——SSL certificate problem: self signed certificate

(Git)git clone报错——SSL certificate problem: self signed certificate 克隆代码时报错 问题分析 提示信息为SSL认证失败&#xff0c;可以关闭SSL的认证。 公司bitbucket只支持https地址&#xff0c;需要client配置忽略https证书检验。 解决方法 在克隆前输入下边命令&…

Linux学习第35天:Linux LCD 驱动实验(二):星星之火可以燎原

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 三、LCD驱动程序编写 需要注意的地方&#xff1a; ①、 LCD 所使用的 IO 配置。 ②、 LCD 屏幕节点修改&#xff0c;修改相应的属性值&#xff0c;换成我们所使…

Spring Data Redis + RabbitMQ - 基于 string + hash 实现缓存,计数(高内聚)

目录 一、Spring Data Redis 1.1、缓存功能(分析) 1.2、案例实现 一、Spring Data Redis 1.1、缓存功能(分析) hash 类型存储缓存相比于 string 类型就有更多的更合适的使用场景. 例如,我有以下这样一个 UserInfo 信息 假设这样一个场景就是:万一只想获取其中某一个…

利用shp文件构建mask【MATLAB和ARCGIS】两种方法

1 ARCGIS &#xff08;推荐&#xff01;&#xff01;&#xff01;-速度很快&#xff09; 利用Polygon to Raster 注意&#xff1a;由于我们想要的mask有效值是1&#xff0c;在进行转换的时候&#xff0c;注意设置转换字段【Value field】 【Value field】通过编辑shp文件属性表…

centos 7部署Mysql8.0主从

Mysql官网中关于部署主从的网址 环境准备&#xff1a; 搭建虚拟机和安装Mysql之前的文章中已经涉及&#xff0c;在此不再赘述。 主从IPMysql账号密码主192.168.213.4root/Root1234!从192.168.213.5root/Root1234! 1、主数据库设置 配置my.cnf 一般存放于/etc/。 主从配…

【git】TortoiseGit图标不显示 及 文件夹中.git文件夹不显示

&#xff08;一&#xff09;文件夹中.git文件夹不显示 在 文件夹选项-查看-高级设置 中&#xff0c; 将 隐藏文件和文件夹中的不显示&#xff0c;标记为“显示隐藏的文件、文件夹和驱动器” &#xff08;二&#xff09;TortoiseGit图标不显示 【情况一】是否有正确安装 Tort…

inne所属公司抢注“童年时光”商标仍被冻结

根据中国商标网查询&#xff0c;国家知识产权局已于2023年3月10日裁定&#xff0c;被告inne所属的南京童年时光生物技术有限公司注册的“童年时光”商标无效。随着这起保健品行业品牌资产争夺事件的发酵&#xff0c;更多的细节得到披露&#xff0c;至此&#xff0c;一个从“代理…

【软件STM32cubeIDE下H73xx配置串口uart1+中断接收/DMA收发+HAL库+简单数据解析-基础样例】

#【软件STM32cubeIDE下H73xx配置串口uart1中断接收/DMA收发HAL库简单数据解析-基础样例】 1、前言2、实验器件3-1、普通收发中断接收实验第一步&#xff1a;代码调试-基本配置&#xff08;1&#xff09;基本配置&#xff08;3&#xff09;时钟配置&#xff08;4&#xff09;保存…

shiro 框架使用学习

简介 Shiro安全框架是Apache提供的一个强大灵活的安全框架Shiro安全框架提供了认证、授权、企业会话管理、加密、缓存管理相关的功能&#xff0c;使用Shiro可以非常方便的完成项目的权限管理模块开发 Shiro的整体架构 1、Subject ​ Subject即主体&#xff08;可以把当前用户…