时序预测 | MATLAB实现WOA-CNN-BiLSTM-Attention时间序列预测(SE注意力机制)

时序预测 | MATLAB实现WOA-CNN-BiLSTM-Attention时间序列预测(SE注意力机制)

目录

    • 时序预测 | MATLAB实现WOA-CNN-BiLSTM-Attention时间序列预测(SE注意力机制)
      • 预测效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本描述

1.MATLAB实现WOA-CNN-BiLSTM-Attention时间序列预测(SE注意力机制);
2.运行环境为Matlab2021b;
3…data为数据集,excel数据,单变量时间序列预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;
5.鲸鱼算法优化学习率,隐藏层节点,正则化系数;

模型描述

注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现WOA-CNN-BiLSTM-Attention时间序列预测(SE注意力机制)
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=WOA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层fullyConnectedLayer(num_class, "Name", "fc")                                      % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/183814.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

虚幻引擎 5.1 中全新的增强型输入操作系统

教程链接 https://www.youtube.com/watch?vCYiHNbAIp4s 前提 虚幻引擎5.1之后,项目设置里的input选项,默认会有一条警告,告知旧的input系统已经不能用了。 做法 在content文件夹下新建一个input按钮 input文件夹里面分成两部分内容 1.…

【JavaEE】实现简单博客系统-前端部分

文件目录&#xff1a; 展示&#xff1a; blog_list.html: <!DOCTYPE html> <html lang"cn"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><t…

轻量封装WebGPU渲染系统示例<21>- 3D呈现元胞自动机之生命游戏(源码)

实现原理: 基本PBR光照与gpu compute计算 当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/GameOfLifeSpherePBR.ts当前示例运行效果: 其他效果截图: 此示例基于此渲染系统实现&#xff0c;当前示例TypeScript源码如…

ZZ038 物联网应用与服务赛题第J套

2023年全国职业院校技能大赛 中职组 物联网应用与服务 任 务 书 &#xff08;J卷&#xff09; 赛位号&#xff1a;______________ 竞赛须知 一、注意事项 1.检查硬件设备、电脑设备是否正常。检查竞赛所需的各项设备、软件和竞赛材料等&#xff1b; 2.竞赛任务中所使用…

掌握未来技术趋势:深度学习与量子计算的融合

掌握未来技术趋势&#xff1a;深度学习与量子计算的融合 摘要&#xff1a;本博客将探讨深度学习与量子计算融合的未来趋势&#xff0c;分析这两大技术领域结合带来的潜力和挑战。通过具体案例和技术细节&#xff0c;我们将一睹这两大技术在人工智能、药物研发和金融科技等领域…

Linux安装nodejs问题

安装nodejs后&#xff0c;使用node -v报下图 参考下面两个可解决&#xff1a;【Linux-编译器gcc/glibc升级】CentOS7.9使用NodeJS18时报错/lib64/libm.so.6: version GLIBC_2.27‘ not found-CSDN博客 报错信息ImportError: /lib64/libstdc.so.6: version CXXABI_1.3.9‘ not f…

挑战100天 AI In LeetCode Day04(热题+面试经典150题)

挑战100天 AI In LeetCode Day04&#xff08;热题面试经典150题&#xff09; 一、LeetCode介绍二、LeetCode 热题 HOT 100-62.1 题目2.2 题解 三、面试经典 150 题-63.1 题目3.2 题解 一、LeetCode介绍 LeetCode是一个在线编程网站&#xff0c;提供各种算法和数据结构的题目&am…

DDD技术方案落地实践 | 京东云技术团队

1. 引言 从接触领域驱动设计的初学阶段&#xff0c;到实现一个旧系统改造到DDD模型&#xff0c;再到按DDD规范落地的3个的项目。对于领域驱动模型设计研发&#xff0c;从开始的各种疑惑到吸收各种先进的理念&#xff0c;目前在技术实施这一块已经基本比较成熟。在既往经验中总…

输电线路AR可视化巡检降低作业风险

随着现代工业的快速发展&#xff0c;各行业的一线技术工人要处理的问题越来越复杂&#xff0c;一些工作中棘手的问题迫切需要远端专家的协同处理。但远端专家赶来现场往往面临着专家差旅成本高、设备停机损失大、专业支持滞后、突发故障无法立即解决等痛点。传统的远程协助似乎…

MySQL的基本建表及操作

MySQL的基本建表及操作 文章目录 MySQL的基本建表及操作一、表的结构二、建库和建表1.建库2.建表 三、复制表四、查表和删表 一、表的结构 数据库表的结构由表名、列名、列数据类型、列约束和索引等元素组成。具体来说&#xff0c;下面是数据库表的结构元素的详细解释&#xf…

宏观角度认识递归之 Pow(x,n) 问题

50. Pow(x, n) - 力扣&#xff08;LeetCode&#xff09; 计算 x 的 n 次幂&#xff0c;如果是直接暴力求解的话&#xff0c;会造成计算时间周期过长&#xff0c;所以要从别的角度出发&#xff0c;将幂等数分为两个幂等数相乘&#xff0c;例如&#xff1a;三的八次方&#xff0c…

合肥工业大学数字逻辑实验三

** 数字逻辑 实验报告** ✅作者简介:CSDN内容合伙人、信息安全专业在校大学生🏆 🔥系列专栏 :hfut实验课设 📃新人博主 :欢迎点赞收藏关注,会回访! 💬舞台再大,你不上台,永远是个观众。平台再好,你不参与,永远是局外人。能力再大,你不行动,只能看别人成功!…

生成m3u8视频:批量剪辑与分割的完美结合

在视频处理领域&#xff0c;m3u8视频格式的出现为高效处理和优化视频内容提供了新的可能。尤其在批量剪辑和分割视频的过程中&#xff0c;掌握m3u8视频的生成技巧&#xff0c;意味着更高效的工作流程和更出色的创作效果。现在一起来看看云炫AI智剪如何生成m3u8视频的操作吧。 步…

验证回文串

如果在将所有大写字符转换为小写字符、并移除所有非字母数字字符之后&#xff0c;短语正着读和反着读都一样。则可以认为该短语是一个 回文串 。 字母和数字都属于字母数字字符。 给你一个字符串 s&#xff0c;如果它是 回文串 &#xff0c;返回 true &#xff1b;否则&#…

闪客网盘系统源码,已测试对接腾讯COS及本地和支付(支持限速+按时收费+文件分享+可对接易支付)- 修复版

正文概述 资源入口 支持对文件下载限速 对接易支付 推广赚钱啥的功能 源码非常的好 支持腾讯cos 阿里云cos 本地储存 远程存储 源码仅支持服务器搭建 php7.2 伪静态thinkphp 运行目录public 导入数据库 修改config目录下的database.php数据库信息 后台地址&#xff1a; 域名/ad…

Maven中的继承与聚合

一&#xff0c;继承 前面我们将项目拆分成各个小模块&#xff0c;但是每个小模块中有很多相同的依赖于是我们创建一个父工程将模块中相同的依赖定义在父工程中&#xff0c;然后子工程继承父工程Maven作用&#xff1a;简化依赖配置&#xff0c;统一依赖管理,可以实现多重继承像J…

互联网Java工程师面试题·Spring篇·第七弹

目录 36、什么是基于 Java 的 Spring 注解配置? 给一些注解的例子. 37、什么是基于注解的容器配置? 38、怎样开启注解装配&#xff1f; 39、Required 注解 40、Autowired 注解 41、Qualifier 注解 42、在 Spring 框架中如何更有效地使用 JDBC? 43、JdbcTemplate 44…

基于若依的ruoyi-nbcio流程管理系统仿钉钉流程json转bpmn的flowable的xml格式(简单支持发起人与审批人的流程)

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 这节简单介绍一下仿钉钉流程json转flowable的xml格式的一个简单例子&#xff0c;目前是测试开发阶段&#…

网络安全与TikTok:年轻一代的数字素养

在数字时代&#xff0c;互联网成为我们生活的重要组成部分&#xff0c;而社交媒体平台则在年轻一代中变得日益流行。其中&#xff0c;TikTok作为一个短视频分享平台&#xff0c;吸引了全球数以亿计的用户&#xff0c;尤其年轻人。 然而&#xff0c;与其快速的普及相伴随的是网…

Java 设计模式——状态模式

目录 1.概述2.结构3.案例实现3.1.抽象状态类3.2.具体状态类3.3.上下文类3.4.测试 4.优缺点5.使用场景 1.概述 【例】通过按钮来控制一个电梯的状态&#xff0c;电梯有开门状态&#xff0c;关门状态&#xff0c;停止状态&#xff0c;运行状态。每一种状态改变&#xff0c;都有可…