揭开堆叠式自动编码器的强大功能

一、介绍

        在不断发展的人工智能和机器学习领域,深度学习技术因其处理复杂和高维数据的能力而广受欢迎。在各种深度学习模型中,堆叠式自动编码器是一种多功能且功能强大的工具,可用于特征学习、降维和数据表示。本文探讨了堆叠式自动编码器在深度学习领域的架构、工作原理、应用和意义。

揭开堆叠式自动编码器的威力,就像剥开数据层,揭示其中隐藏的宝藏,一次一个神经连接。

二、自动编码器:简要概述

        自动编码器的核心是用于编码和解码数据的神经网络模型,本质上是模拟数据压缩和重建的过程。它们由一个编码器网络组成,前者将输入数据映射到较低维的潜在空间表示,后者从该表示中重建输入数据。自动编码器背后的核心思想是学习输入数据的压缩表示,以保留最显着的特征。这使得它们可用于降维、去噪和特征学习等任务。

三、单层自动编码器与堆叠式自动编码器

        单层自动编码器虽然对简单任务有效,但在捕获许多真实数据集中存在的复杂和分层特征方面存在局限性。堆叠式自动编码器通过将多层自动编码器级联在一起以形成深度架构来解决此限制。这些层从数据中学习越来越抽象和复杂的特征,从而创建分层表示。从本质上讲,堆叠自动编码器是多层神经网络,旨在捕获数据中的复杂模式和表示。

四、堆叠式自动编码器的工作原理

  1. 培训前:堆叠式自动编码器的训练过程通常包括两个阶段。在预训练阶段,每一层都作为单层自动编码器单独训练。此阶段初始化权重和偏差,使网络能够学习有用的特征表示。
  2. 微调:预训练后,将各层组合在一起以创建堆叠自动编码器。然后使用反向传播和梯度下降对网络进行微调,以最大限度地减少重建误差,确保有效地学习分层特征。

五、堆叠式自动编码器的应用

  1. 维:堆叠自动编码器在降低高维数据集的维度方面非常有效,使其在各个领域(包括图像和文本数据)中都具有价值。
  2. 异常检测:它们可以通过重建数据并将其与原始数据进行比较来用于异常检测;差异表明存在异常。
  3. 图像和语音识别:堆叠式自动编码器已用于图像和语音识别任务,以学习鲁棒的特征表示,从而提高这些系统的性能。
  4. 自然语言处理: 在 NLP 中,这些模型可以学习文本的分布式表示,从而实现更好的语言理解和生成。
  5. 协同过滤:堆叠式自动编码器可以应用于推荐系统,通过学习用户和项目嵌入来提高推荐质量。

六、意义与挑战

        堆叠式自动编码器为深度学习做出了重大贡献,并在推动该领域发展方面发挥了至关重要的作用。它们学习分层特征和处理高维数据的能力在各种应用中取得了重大突破。然而,挑战也存在,例如需要大量的标记数据和计算资源来训练深度架构。

七、代码

        使用数据集和绘图为堆叠自动编码器创建完整的 Python 代码需要多个库,并且可能因您选择的数据集而异。在此示例中,我们将使用 MNIST 数据集,这是图像相关任务的常见选择。在此示例中,我们将使用 Keras 和 Matplotlib。

# Import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam# Load and preprocess the MNIST dataset
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train / 255.0
x_test = x_test / 255.0# Flatten the data
x_train = x_train.reshape(x_train.shape[0], -1)
x_test = x_test.reshape(x_test.shape[0], -1)# Define a Stacked Autoencoder model
autoencoder = Sequential()# Encoder
autoencoder.add(Dense(128, input_shape=(784,), activation='relu'))
autoencoder.add(Dense(64, activation='relu'))# Decoder
autoencoder.add(Dense(128, activation='relu'))
autoencoder.add(Dense(784, activation='sigmoid'))# Compile the model
autoencoder.compile(optimizer=Adam(), loss='mean_squared_error')# Train the autoencoder
autoencoder.fit(x_train, x_train, epochs=10, batch_size=128, shuffle=True, validation_data=(x_test, x_test))# Plot the original and reconstructed images
decoded_imgs = autoencoder.predict(x_test)n = 10  # Number of images to display
plt.figure(figsize=(20, 4))
for i in range(n):# Original Imagesax = plt.subplot(2, n, i + 1)plt.imshow(x_test[i].reshape(28, 28))plt.gray()ax.get_xaxis().set_visible(False)ax.get_yaxis().set_visible(False)# Reconstructed Imagesax = plt.subplot(2, n, i + 1 + n)plt.imshow(decoded_imgs[i].reshape(28, 28))plt.gray()ax.get_xaxis().set_visible(False)ax.get_yaxis().set_visible(False)
plt.show()

        此代码演示了使用 MNIST 数据集的堆叠自动编码器。在运行此代码之前,应安装所需的库(Keras、Matplotlib)。调整模型架构和参数以适合您的特定数据集和任务。

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11490434/11490434 [==============================] - 0s 0us/step
Epoch 1/10
469/469 [==============================] - 10s 17ms/step - loss: 0.0405 - val_loss: 0.0185
Epoch 2/10
469/469 [==============================] - 10s 21ms/step - loss: 0.0154 - val_loss: 0.0124
Epoch 3/10
469/469 [==============================] - 9s 19ms/step - loss: 0.0115 - val_loss: 0.0101
Epoch 4/10
469/469 [==============================] - 9s 19ms/step - loss: 0.0097 - val_loss: 0.0088
Epoch 5/10
469/469 [==============================] - 9s 19ms/step - loss: 0.0085 - val_loss: 0.0078
Epoch 6/10
469/469 [==============================] - 9s 19ms/step - loss: 0.0076 - val_loss: 0.0071
Epoch 7/10
469/469 [==============================] - 8s 17ms/step - loss: 0.0071 - val_loss: 0.0066
Epoch 8/10
469/469 [==============================] - 9s 19ms/step - loss: 0.0066 - val_loss: 0.0062
Epoch 9/10
469/469 [==============================] - 9s 19ms/step - loss: 0.0063 - val_loss: 0.0059
Epoch 10/10
469/469 [==============================] - 8s 17ms/step - loss: 0.0060 - val_loss: 0.0058
313/313 [==============================] - 3s 8ms/step

八、结论

        堆叠自动编码器是一类强大的神经网络,它彻底改变了深度学习领域。它们在特征学习、降维和数据表示方面表现出色,使其在广泛的应用中具有不可估量的价值。随着深度学习领域的不断发展,堆叠式自动编码器在释放复杂数据潜力方面的重要性怎么强调都不为过。

引用

        以下是一些与堆叠式自动编码器及其应用相关的开创性和值得注意的论文:

  1. Vincent,P.,Larochelle,H.,Lajoie,I.,Bengio,Y.和Manzagol,PA(2010)。堆叠去噪自动编码器:使用局部去噪标准在深度网络中学习有用的表示。机器学习研究杂志, 11, 3371–3408.
  2. Bengio,Y.,Lamblin,P.,Popovici,D.和Larochelle,H.(2007)。深度网络的贪婪分层训练。在神经信息处理系统进展中(第 153-160 页)。
  3. Ranzato,M.,Huang,FJ,Boureau,Y.L.和LeCun,Y.(2007)。不变特征层次结构的无监督学习及其在对象识别中的应用。在 2007 年 IEEE 计算机视觉和模式识别会议论文集(第 1-8 页)中。
  4. Hinton,GE和Salakhutdinov,R.R.(2006)。使用神经网络降低数据的维数。科学,313(5786),504-507。
  5. Vincent,P.,Lajoie,I.,Bengio,Y.,Manzagol,PA和Paquet,D.(2010)。堆叠去噪自动编码器:使用局部去噪标准在深度网络中学习有用的表示。机器学习研究杂志, 11(Dec), 3371–3408.

        请注意,这些论文的可用性可能会有所不同,有些可能需要访问学术数据库或期刊。您可以在 Google Scholar、arXiv 或学术图书馆网站等平台上搜索这些论文。

参考资料:

人工智能
机器学习
深度学习
自动编码器

埃弗顿·戈梅德

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/183907.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

R语言实操记录——导出高清图片(矢量图)

R语言 R语言实操记录——导出高清图片(矢量图) 文章目录 R语言一、起因(闲聊,可跳过)二、如何在R中导出高清图片(矢量图)2.1、保存为EPS图片格式后转AI编辑2.2、保存为PDF格式(推荐…

LabVIEW实现变风量VAV终端干预PID控制

LabVIEW实现变风量VAV终端干预PID控制 变风量(VAV)控制方法的研究一直是VAV空调研究的重点。单端PID控制在温差较大时,系统容易出现过冲。针对空调终端单端PID控制的不足,设计一种干预控制与PID控制耦合的控制方法。项目使用LabV…

关于Alibaba Cloud Toolkit 下载配置以及后端自动部署

idea中File-Settings-Plugins 搜索Alibaba Cloud Toolkit点击下载,下载完成重启 1、点击 Tools-Alibaba Cloud-Deploy to Host 部署到主机 2、配置服务器ip、jar包启动命令、服务器jar存放位置 3、设置服务器ip用户名密码,点击测试连接情况 4、配置脚本…

Flink SQL TopN语句详解

TopN 定义(⽀持 Batch\Streaming): TopN 对应离线数仓的 row_number(),使⽤ row_number() 对某⼀个分组的数据进⾏排序。 应⽤场景: 根据 某个排序 条件,计算 某个分组 下的排⾏榜数据。 SQL 语法标准&am…

基于Java+SpringBoot+LayUI仓库管理系统

一.项目介绍 本项目是使用JavaSpringBoot开发,可以实现仓库的注册、登录,登录后可进入系统,进行客户管理、供应商管理、商品管理、商品退货查询管理、登录日志及退出等几大模块。系统界面采用传统的后台管理界面,界面简单、直观。…

【大数据】NiFi 中的处理器(一):GenerateTableFetch

NiFi 中的处理器(一):GenerateTableFetch 1.简介2.应用场景3.示例3.1 案例一:无输入流文件,来源表含增量字段3.2 案例二:无输入流文件,不含增量字段3.3 案例三:无输入流文件&#xf…

Transformer的最简洁pytorch实现

目录 前言 1. 数据预处理 2. 模型参数 3. Positional Encoding 4. Pad Mask 5. Subsequence Mask 6. ScaledDotProductAttention 7. MultiHeadAttention 8. FeedForward Networks 9. Encoder Layer 10. Encoder 11. Decoder Layer 12. Decoder 13. Transformer 1…

【单片机基础小知识-如何通过指针来读写寄存器】

寄存器的本质就是内存,RAM,而指针是可以对内存进行操作的,因此可以通过指针来读写寄存器。 如何读取以下一片地址: 步骤1、首地址 结构体,它所占用的内存空间大小与它内部成员有关。 构造一个28字节的类型 type…

计算机服务器中了locked勒索病毒怎么办,勒索病毒解密,数据恢复

随着网络技术的不断成熟,网络中存在的病毒威胁也不断增多,近期,云天数据恢复中心陆续接到很多企业的求助,企业的计算机服务器数据库遭到了勒索病毒攻击,并且勒索病毒的攻击与加密形式也发生了许多变化。其中攻击次数较…

python对Windows如何进行关机/重启?

用CMD命令进行关机/重启步骤: 1.winR,换出输入框 2.在输入框输入命令,如关机:shutdown -s -t 20,该命令是20秒后关机。 命令说明 -s 关机 -r 重启 -t 时间,后面是数字是你要设置的秒数 -a 取消命令&…

bilibili快速升满级(使用Docker 容器脚本)

部署bilibili升级运行容器脚本 docker run --name"bili" -v /bili/Logs:/app/Logs -e Ray_DailyTaskConfig__Cron"30 9 * * *" -e Ray_LiveLotteryTaskConfig__Cron"40 9 * * *" -e Ray_UnfollowBatchedTaskConfig__Cron"…

​软考-高级-信息系统项目管理师教程 第四版【第19章-配置与变更管理-思维导图】​

软考-高级-信息系统项目管理师教程 第四版【第19章-配置与变更管理-思维导图】 课本里章节里所有蓝色字体的思维导图

安防监控EasyCVR视频汇聚平台使用海康SDK播放时,画面播放缓慢该如何解决?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同,支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。安防视频平台EasyCVR拓展性强,视频能力丰富,具体可实现视频监控直播、视频轮播、视频录像、云存储、…

node插件express(路由)的插件使用(二)——body-parser和ejs插件的基本使用

文章目录 前言一、express使用中间件body-parser获取请全体的数据1. 代码2. 效果 二、express使用ejs(了解即可)1.安装2.作用3.基本使用(1)代码(2)代码分析和效果 4.列表渲染(1)代码…

【算法| 差分 No.1】AcWing 797. 差分 AcWing 798. 差分矩阵

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮…

时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测 目录 时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.Matlab实现SVM-Adaboost时间序列预测(风…

SpringBoot案例(数据层、业务层、表现层)

1.创建项目 2.选择坐标 3.添加坐标 说明&#xff1a;为了便于开发&#xff0c;引入了lombak坐标。 <!--添加mybatis-plus坐标--><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><ver…

verilog 每日一练- 移位寄存器

module shift_1x64 (clk, shift,sr_in,sr_out,);input clk, shift;input sr_in;output sr_out;reg [63:0] sr;always(posedge clk)beginif (shift 1b1)beginsr[63:1] < sr[62:0];sr[0] < sr_in;endendassign sr_out sr[63];endmodule 这个Verilog模块 shift_1x64 实现了…

1、Sentinel基本应用限流规则(1)

Sentinel基本应用&限流规则 1.1 概述与作用 随着微服务的流行&#xff0c;服务和服务之间的稳定性变得越来越重要。缓存、降级和限流是保护微服务系统运行稳定性的三大利器。 缓存&#xff1a;提升系统访问速度和增大系统能处理的容量 降级&#xff1a;当服务出问题或者影…

Linux cat命令

连接文件并打印输出到标准输出设备。cat 命令可以用来显示文本文件的内容&#xff08;类似于 DOS 下的 type 命令&#xff09;&#xff0c;也可以把几个文件内容附加到另一个文件中&#xff0c;即连接合并文件。 关于此命令&#xff0c;有人认为写 cat 命令的人是因为喜欢猫&am…