线性代数 | 矩阵运算 加减 数乘 矩阵的幂运算

文章目录

  • 1 矩阵加减和数乘
  • 2 矩阵与矩阵的乘法
    • 2.1 相乘条件:看中间,取两头
    • 2.2 相乘计算方法
  • 3 矩阵的幂
    • 3.1 观察归纳法
    • 3.2 邻项相消法
    • 3.3 化为对角
  • 4 判断是否可逆(证明题或者要求求出逆矩阵)
    • 4.1 直接观察
    • 4.2 由定义式推得
      • 4.2.1 待定系数—解方程
      • 4.2.2 等价替换
      • 4.2.3 因式分解
    • 4.3 由性质推得
    • 4.4 由矩阵行列式
    • 4.5 阵的秩方阵满秩可逆,不满秩是不可逆的
  • 5. 逆的性质以及求逆的方法
    • 5.1 各自可逆,则乘积可逆。
    • 5.2 初等变换法
    • 5.3 伴随矩阵法
    • 5.4 定义式法
  • 6 逆的应用
    • 6.1 方程组
  • 7 矩阵转置
    • 7.1 与行列式相联系(方阵)
    • 7.2 正交矩阵
    • 7.3 对称矩阵判别

《线性代数》中会有较多陌生的概念,如矩阵的逆,线性相关线性无关等,具有一定的难度。因而本系列尽量会以不同于课本的视角去学习线性代数,有些可以做类比记忆的我们会去做一些类比记忆,比如矩阵的逆类比于我们数的除法,有一些比如线性相关和无关会尽量以几何的方式直观地让大家去了解相关的内容。

​ 《线性代数》系列重点总结线性代数相关的一些学科思想,重点方法,鉴于时间等各方面原因,对于基础的概念并不会重点阐释与总结,有基础概念不了解的比如同型矩阵去翻阅课本,课本上一定有详细的定义。所以本系列适合于初步预习之后的阅读或者在正式学习之时难点知识的参考或者在总复习之时整理相关题型方法,建立学科体系的阅读。

​ 例题很重要,建议自己先尝试做一遍,再去看答案。同时,自己在做题过程中,遇到不会的要看看是否是下面的一些方法未掌握,或者是这些方法的综合应用,把自己不会的题总结到笔记本中,做一定的标记。

​ 加油,希望你有所收获!!!

​ 矩阵的运算其实类比于我们数的运算,无非也就是加减乘除。只不过在矩阵的运算中,会有更多的条件限制,比如矩阵的加减必须为同型矩阵,交换律在矩阵乘法中不满足等等。但也有很多相似的地方,比如矩阵的逆也就是我们数的除法,当矩阵行列式为零时矩阵不可逆,我们也可以联想到数如果为零的话是不能除的。

1 矩阵加减和数乘

矩阵的加减和数乘细心即可,只需要注意以下两点

(1)矩阵的加减必须为同型矩阵,行和列数要相同

(2)矩阵的数乘要区分于行列式的数乘,kA是给矩阵中的每一个元素都乘以k,而k|A|是给行列式的某一行(列)乘k

2 矩阵与矩阵的乘法

2.1 相乘条件:看中间,取两头

两个矩阵的行列数顺次排列构成四个数 a1、a2、a3、a4,只有a2=a3才能相乘,乘出来的矩阵行列分别为a1和a4 。因而我们称为看中间,取两头。好比两个朋友见面先要对个暗号,只有暗号相符(中间两个数相等)才可以计算

例1.1:

A 3 ∗ 5 ∗ B 4 ∗ 5 A_{3*5}*B_{4*5} A35B45

a1=3 a2=5 a3=4 a4=5 因而不能相乘

例1.2:

A 3 ∗ 4 ∗ B 4 ∗ 5 = C 3 ∗ 5 A_{3*4}*B_{4*5}=C_{3*5} A34B45=C35

可以相乘,得到的矩阵行列分别为3和5

2.2 相乘计算方法

​ 第一个矩阵的每一行分别去乘第二个矩阵的每一列并相加,并无难点,熟悉计算即可。

3 矩阵的幂

3.1 观察归纳法

​ 归纳法使用于二阶三阶,阶数较小的情况,或者虽然阶数较高,但零比较多。我们可以先尝试写出二次方,三次方,观察规律,推测结果。

​ 例1.1:设 A = ( 1 0 2 1 ) A=\begin{pmatrix}1&0\\2&1\end{pmatrix} A=(1201) A n A^n An

​ 解: A 2 = ( 1 0 4 1 ) A^2=\begin{pmatrix}1&0\\4&1\end{pmatrix} A2=(1401) A 3 = ( 1 0 6 1 ) A^3=\begin{pmatrix}1&0\\6&1\end{pmatrix} A3=(1601) 我们可以推测 A n = ( 1 0 2 n 1 ) A^n=\begin{pmatrix}1&0\\2n&1\end{pmatrix} An=(12n01)

​ 如果是填空题直接写答案即可,如果是大题,还需要进行验证

​ 猜想 A n = ( 1 0 2 n 1 ) A^n=\begin{pmatrix}1&0\\2n&1\end{pmatrix} An=(12n01) n=1 时成立 当n>1 时,设公式对于n-1成立,则 A n = A n − 1 A = ( 1 0 2 ( n − 1 ) 1 ) ( 1 0 2 1 ) = ( 1 0 2 n 1 ) A^n=A^{n-1}A=\begin{pmatrix}1&0\\2(n-1)&1\end{pmatrix}\begin{pmatrix}1&0\\2&1\end{pmatrix}=\begin{pmatrix}1&0\\2n&1\end{pmatrix} An=An1A=(12(n1)01)(1201)=(12n01)

​ 猜想正确

3.2 邻项相消法

​ 临项相消法使用于AB矩阵乘积形式,如果BA简单易求,结果为对角矩阵或者是一个常数或者由题目已知,则可以先算BA 即 ( A B ) n = A B A B . . . A B = A ( B A ) ( B A ) . . . B (AB)^n=ABAB...AB=A(BA)(BA)...B (AB)n=ABAB...AB=A(BA)(BA)...B

​ 例1.2 : 设 A = ( 1 1 1 ) A=\begin{pmatrix}1\\1\\1\end{pmatrix} A= 111 B = ( 1 2 3 ) B=\begin{pmatrix}1&2&3\end{pmatrix} B=(123) ( A B ) 10 (AB)^{10} (AB)10

A B = ( 1 2 3 1 2 3 1 2 3 ) AB=\begin{pmatrix}1&2&3\\1&2&3\\1&2&3\end{pmatrix} AB= 111222333 BA=6 我们发现BA比AB更容易求,则我们优先计算BA

则我们 ( A B ) 10 = A B A B . . . A B = A ( B A ) ( B A ) . . B = 6 9 A B = 6 9 ( 1 2 3 1 2 3 1 2 3 ) (AB)^{10}=ABAB...AB=A(BA)(BA)..B=6^9AB=6^9\begin{pmatrix}1&2&3\\1&2&3\\1&2&3\end{pmatrix} (AB)10=ABAB...AB=A(BA)BA..B=69AB=69 111222333 $

3.3 化为对角

​ 这是我们第5章矩阵对角化的重要应用,放在这里只是为了提醒大家有这一种方法,在综合大题中,这种化为对角的方法应用还是蛮多的。化为对角矩阵为什么可行,因为对角矩阵相乘直接对角线上对应元素相乘即可

​ 例:

在这里插入图片描述

​ A可对角化为对角矩阵B ( 5 0 0 0 − 1 0 0 0 − 1 ) \begin{pmatrix}5&0&0\\0&-1&0\\0&0&-1\end{pmatrix} 500010001 则有 P − 1 A P = B P^{-1}AP=B P1AP=B A = P B P − 1 A=PBP^{-1} A=PBP1

A k = P B P − 1 P B P − 1 . . . P B P − 1 = P B k P − 1 A^k=PBP^{-1}PBP^{-1}...PBP^{-1}=PB^kP^{-1} Ak=PBP1PBP1...PBP1=PBkP1 B k = ( 5 k 0 0 0 ( − 1 ) k 0 0 0 ( − 1 ) K ) B^k=\begin{pmatrix}5^k&0&0\\0&(-1)^k&0\\0&0&(-1)^K\end{pmatrix} Bk= 5k000(1)k000(1)K 进而求得A的k次方

接下来就是矩阵的逆运算了!!

也就是矩阵的除法,涉及到判断是否可逆,逆的性质,逆的应用等等

4 判断是否可逆(证明题或者要求求出逆矩阵)

4.1 直接观察

​ 某一行或某一列为零的不可逆

​ 如果为二阶矩阵可以利用公式直接判断并计算逆矩阵

4.2 由定义式推得

​ 如果A×B=E 则A的逆为B 有时候需要凑定义式,本质上就是转换为乘积的形式,而这其中的技巧性又很强,常见的技巧如下,抓住核心,转换为乘积形式。(K P30 例1.18)

4.2.1 待定系数—解方程

例1.1 设A,C分别为m和n阶矩阵,求证矩阵M= ( O A C B ) \begin{pmatrix}O&A\\C&B\end{pmatrix} (OCAB) 可逆,并求其逆矩阵。

​ 解:

在这里插入图片描述

4.2.2 等价替换

​ 有时候可以直接从式子中得到我们要求的量的等价关系

例1.2 设方阵A满足 A 2 − 4 A − E = 0 A^2-4A-E=0 A24AE=0,证明A以及4A+E是可逆的,并求各自的逆矩阵

​ 解: A 2 − 4 A = E A^2-4A=E A24A=E A ( A − 4 E ) = E A(A-4E)=E AA4E=E 所以 A − 1 = A − 4 E A^{-1}=A-4E A1=A4E 由原式可知 4 A + E = A 2 4A+E=A^2 4A+E=A2

​ 则有 ( 4 A + E ) − 1 = ( A 2 ) − 1 (4A+E)^{-1}=(A^{2})^{-1} 4A+E1=(A2)1= = ( A − 1 ) 2 =(A^{-1})^{2} =(A1)2= ( A − 4 E ) 2 (A-4E)^2 (A4E)2 此题中我们可以得到要求的4A+E的逆相当于求A平方的逆,进而转换为我们要求的量

4.2.3 因式分解

​ 如果我们有 A 2 − 3 A − 4 E = E A^2-3A-4E=E A23A4E=E 求A+E的逆,我们可以很轻松的想到 ( A − 4 E ) ( A + E ) = E (A-4E)(A+E)=E (A4E)(A+E)=E,自然我们也可以求得(A+E)的逆

​ 那如果我们把E进行一个变化如都移在右边,或者在加减E,这时候求法依然一样。

例1.3 设A为n阶矩阵,设 A 2 = A A^2=A A2=A,证明 ( A + E ) − 1 (A+E)^{-1} (A+E)1可逆并求逆矩阵

​ 解: A 2 − A − 2 E = − 2 E A^2-A-2E=-2E A2A2E=2E ( A − 2 E ) ( A + E ) = − 2 E (A-2E)(A+E)=-2E (A2E)(A+E)=2E − 1 2 ( A − 2 E ) ( A + E ) = E -\frac{1}{2}(A-2E)(A+E)=E 21(A2E)(A+E)=E 自然可以求得我们要求的答案为 − 1 2 ( A − 2 E ) -\frac{1}{2}(A-2E) 21(A2E)

4.3 由性质推得

如果同阶方阵A1,A2…An 可逆,则我们可以知道A1 * A2 * … *An 可逆

例1.4 设A,B是同阶可逆方阵,且A+B也可逆,证明 A − 1 + B − 1 A^{-1}+B^{-1} A1+B1可逆,并求出逆矩阵

​ 解: A − 1 + B − 1 = A − 1 ( B B − 1 ) + ( A − 1 A ) B − 1 = A − 1 ( A + B ) B − 1 A^{-1}+B^{-1}=A^{-1}(BB^{-1})+(A^{-1}A)B^{-1}=A^{-1}(A+B)B^{-1} A1+B1=A1BB1+(A1A)B1=A1(A+B)B1

​ 因为A+B和 A − 1 A^{-1} A1 B − 1 B^{-1} B1分别可逆,则原式可逆

4.4 由矩阵行列式

我们在数的除法中,零是不能做除数的,那么类比行列式,行列式为零的时候是不可逆的。

例1.5 设n阶方阵B可逆,方阵A满足 A 2 − A = B A^2-A=B A2A=B,证明A可逆,并求其逆矩阵‘

​ 解:因为B可逆,所以 |B|≠0 |B| =|A||A-E| 所以|A|≠0 所以A可逆

4.5 阵的秩方阵满秩可逆,不满秩是不可逆的

5. 逆的性质以及求逆的方法

5.1 各自可逆,则乘积可逆。

即如果 A 1 , A 2 , . . . , A s A_1,A_2, ... ,A_s A1,A2,...,As 可逆,那么乘积 A 1 A 2 . . . A s A_1A_2 ... A_s A1A2...As 可逆,且 ( A 1 A 2 . . . A s ) − 1 = A s − 1 . . . A 2 − 1 A 1 − 1 (A_1A_2 ... A_s)^{-1}=A_s^{-1}...A_2^{-1}A_1^{-1} A1A2...As1=As1...A21A11

​ 例1.4 用到了这个性质

注意如果 ( A + B ) − 1 (A+B)^{-1} (A+B)1不等于 A − 1 + B − 1 A^{-1}+B^{-1} A1+B1 我记得我最开始学习的时候很容易犯这个错误,其实本质上是和转置混淆了,如果转置的话是成立的, ( A + B ) T (A+B)^{T} (A+B)T= A T + B T A^{T}+B^{T} AT+BT

5.2 初等变换法

​ 初等变换是我们求逆的最常用的方法,我们熟悉的

例1.1 设A,C分别为m和n阶矩阵,求证矩阵M= ( O A C B ) \begin{pmatrix}O&A\\C&B\end{pmatrix} (OCAB) 可逆,并求其逆矩阵。

在这里插入图片描述

5.3 伴随矩阵法

​ AA*=|A|E

5.4 定义式法

​ 同上判断可逆时,如果AB=E ,则不仅可以判断A可逆,也可以直接得出A的逆为B

6 逆的应用

6.1 方程组

​ 就是将我们的方程组求解转换为两个矩阵相乘,前提是A的逆好求或已知,否则的话我们还是运用后面的求方程组的方法

A x = B Ax=B Ax=B 则 $ x=A^{-1}B$

7 矩阵转置

7.1 与行列式相联系(方阵)

转置行列式值不变

7.2 正交矩阵

正交矩阵的转置等于矩阵的逆

7.3 对称矩阵判别

对称矩阵的情况下, A T = A A^T=A AT=A

例1.1 证明 A T A A^TA ATA A A T AA^T AAT为对称矩阵

补充题库

四-1.2.1 K P31 B 5T

四-1.2.1 K P30 例1.18

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/186148.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

适用于4D毫米波雷达的目标矩形框聚类

目录 一、前言 二、点云聚类分割 三、基于方位搜索L型拟合 四、评价准则之面积最小化 五、评价准则之贴合最大化 六、评价准则之方差最小化 一、前言 对于多线束雷达可以获取目标物体更全面的面貌,在道路中前向或角雷达可能无法获取目标车矩形框但可以扫到两边…

【Shell脚本8】Shell printf 命令

Shell printf 命令 printf 命令模仿 C 程序库(library)里的 printf() 程序。 printf 由 POSIX 标准所定义,因此使用 printf 的脚本比使用 echo 移植性好。 printf 使用引用文本或空格分隔的参数,外面可以在 printf 中使用格式化…

使用Go语言抓取酒店价格数据的技术实现

目录 一、引言 二、准备工作 三、抓取数据 四、数据处理与存储 五、数据分析与可视化 六、结论与展望 一、引言 随着互联网的快速发展,酒店预订已经成为人们出行的重要环节。在选择酒店时,价格是消费者考虑的重要因素之一。因此,抓取酒…

GZ038 物联网应用开发赛题第2套

2023年全国职业院校技能大赛 高职组 物联网应用开发 任 务 书 (第2套卷) 工位号:______________ 第一部分 竞赛须知 一、竞赛要求 1、正确使用工具,操作安全规范; 2、竞赛过程中如有异议,可向现场考评人员反映,不得扰乱赛场秩序; 3、遵守赛场纪律,尊重考评人员,…

数据结构-Prim算法构造无向图的最小生成树

引子: 无向图如果是一个网,那么它的所有的生成树中必有一颗生成树的边的权值之和是最小的,我们称 这颗权值和最小的树为:“最小生成树”(MST)。 其中,一棵树的代价就是树中所有权值之和。 而…

2023云栖大会,Salesforce终敲开中国CRM市场

2015年被视为中国CRM SaaS元年,众多CRM SaaS创业公司和厂商在Salesforce的榜样作用下涌入了CRM SaaS赛道。在全球市场,Salesforce是CRM SaaS领域的领导厂商,连续多年占据了全球CRM SaaS第一大厂商地位。然而,Salesforce作为业务类…

【Linux】 reboot 命令使用

reboot 命令用于用来重新启动计算机。 语法 reboot [参数] 命令选项及作用 执行令 man --reboot 执行命令结果 参数 -n : 在重开机前不做将记忆体资料写回硬盘的动作-w : 并不会真的重开机,只是把记录写到 /var/log/wtmp 档案里-d : 不把记录写到 /var/log…

Vue el-table序号与复选框hover切换

效果图下&#xff1a; <template><div class"container"><el-tableref"multipleTable"id"multipleTable":data"person.tableData"cell-mouse-enter"cellEnter"cell-mouse-leave"cellLeave"selecti…

探索人工智能领域——30个名词详解

目录 前言 正文 总结​​​​​​​ &#x1f308;嗨&#xff01;我是Filotimo__&#x1f308;。很高兴与大家相识&#xff0c;希望我的博客能对你有所帮助。 &#x1f4a1;本文由Filotimo__✍️原创&#xff0c;首发于CSDN&#x1f4da;。 &#x1f4e3;如需转载&#xff0c;请…

在WSL2中安装多个Ubuntu实例

参考&#xff1a;How to install multiple instances of Ubuntu in WSL2 本文主要内容 第一步&#xff1a;在 WSL2 中安装最新的 Ubuntu第二步&#xff1a;下载适用于 WSL2 的 Ubuntu 压缩包第三步&#xff1a;在 WSL2 中安装第二个 Ubuntu 实例第四步&#xff1a;登录到第二个…

什么是代理IP池?真实测评IP代理商的IP池是否真实?

代理池充当多个代理服务器的存储库&#xff0c;提供在线安全和匿名层。代理池允许用户抓取数据、访问受限制的内容以及执行其他在线任务&#xff0c;而无需担心被检测或阻止的风险。代理池为各种在线活动&#xff08;例如网页抓取、安全浏览等&#xff09;提高后勤保障。 读完…

AI:77-基于深度学习的工业缺陷检测

🚀 本文选自专栏:人工智能领域200例教程专栏 《人工智能领域200例教程专栏》从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,通过本专栏案例和项目实践,都有参考学习意义。每篇案例都包含代码实例,详细讲解供大家学习。 ✨✨✨ 每一个案例都附带有代码,在本…

在jupyter中使用R

如果想在Jupyter Notebook中使用R语言&#xff0c;以下几个步骤操作可行&#xff1a; 1、启动Anaconda Prompt 2、进入R的安装位置&#xff0c;切换到R的安装位置&#xff1a;D:\Program Files\R\R-3.4.3\bin&#xff0c;启动R&#xff0c;具体代码操作步骤如下&#xff0c;在…

2022年06月 Python(四级)真题解析#中国电子学会#全国青少年软件编程等级考试

Python等级考试(1~6级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 有如下Python程序,包含lambda函数,运行该程序后,输出的结果是?( ) g = lambda x,y:x*y print(g(2,3)

18. 深度学习 - 从零理解神经网络

文章目录 本文目标预测趋势与关系波士顿房价预测 Hi, 你好。我是茶桁。 我们终于又开启新的篇章了&#xff0c;从今天这节课开始&#xff0c;我们会花几节课来理解一下深度学习的相关知识&#xff0c;了解神经网络&#xff0c;多层神经网络相关知识。并且&#xff0c;我们会尝…

【经验模态分解】3.EMD模态分解算法设计与准备工作

/*** poject 经验模态分解及其衍生算法的研究及其在语音信号处理中的应用* file EMD模态分解算法设计与准备工作* author jUicE_g2R(qq:3406291309)* * language MATLAB* EDA Base on matlabR2022b* editor Obsidian&#xff08;黑曜石笔记软…

【机器学习基础】机器学习概述

目录 前言 一、机器学习概念 二、机器学习分类 三、机器学习术语 &#x1f308;嗨&#xff01;我是Filotimo__&#x1f308;。很高兴与大家相识&#xff0c;希望我的博客能对你有所帮助。 &#x1f4a1;本文由Filotimo__✍️原创&#xff0c;首发于CSDN&#x1f4da;。 &#x…

机器视觉工程师注意,没有经历过公司倒闭看下文章,机器视觉公司即将要倒闭的征兆是什么?

很多机器视觉工程师没有经历过公司倒闭&#xff0c;谁也不想自己的公司倒闭&#xff0c;毕竟我们是打工人&#xff0c;拿固定工资的。 机器视觉公司即将要倒闭的征兆有哪些迹象​&#xff1f;​ 1、PM&#xff0c;机器视觉工程师频繁开会&#xff0c;甚至周末强制开会。 2.停…

Azure - 机器学习:使用自动化机器学习训练计算机视觉模型的数据架构

目录 一、用于训练的数据架构图像分类&#xff08;二进制/多类&#xff09;多标签图像分类对象检测实例分段 二、用于推理的数据格式输入格式输出格式图像分类多标签图像分类对象检测实例分段 了解如何设置Azure中 JSONL 文件格式&#xff0c;以便在训练和推理期间在计算机视觉…

debian 已安装命令找不到 解决方法

前言&#xff1a;安装了debian系统&#xff0c;更新完软件包安装软件之后发现很多命令找不到&#xff0c;查找命令路径发现命令已经安装了&#xff0c;但是没办法直接使用 更新软件包 &#xff08;第一次安装的系统一定要执行&#xff0c;不然可能无法安装软件&#xff09; apt…