Rust编程中的共享状态并发执行

1.共享状态并发

虽然消息传递是一个很好的处理并发的方式,但并不是唯一一个。另一种方式是让多个线程拥有相同的共享数据。在学习Go语言编程过程中大家应该听到过一句口号:"不要通过共享内存来通讯"。

在某种程度上,任何编程语言中的信道都类似于单所有权,因为一旦将一个值传送到信道中,将无法再使用这个值。共享内存类似于多所有权:多个线程可以同时访问相同的内存位置。第十五章介绍了智能指针如何使得多所有权成为可能,然而这会增加额外的复杂性,因为需要以某种方式管理这些不同的所有者。Rust 的类型系统和所有权规则极大的协助了正确地管理这些所有权。作为一个例子,让我们看看互斥器,一个更为常见的共享内存并发原语。

互斥器mutex)是 mutual exclusion 的缩写,也就是说,任意时刻,其只允许一个线程访问某些数据。为了访问互斥器中的数据,线程首先需要通过获取互斥器的 lock)来表明其希望访问数据。锁是一个作为互斥器一部分的数据结构,它记录谁有数据的排他访问权。因此,我们描述互斥器为通过锁系统 保护guarding)其数据。

互斥器以难以使用著称,因为你不得不记住:

  1. 在使用数据之前尝试获取锁。

  2. 处理完被互斥器所保护的数据之后,必须解锁数据,这样其他线程才能够获取锁。

作为一个现实中互斥器的例子,想象一下在某个会议的一次小组座谈会中,只有一个麦克风。如果一位成员要发言,他必须请求或表示希望使用麦克风。一旦得到了麦克风,他可以畅所欲言,然后将麦克风交给下一位希望讲话的成员。如果一位成员结束发言后忘记将麦克风交还,其他人将无法发言。如果对共享麦克风的管理出现了问题,座谈会将无法如期进行!

正确的管理互斥器异常复杂,这也是许多人之所以热衷于信道的原因。然而,在 Rust 中,得益于类型系统和所有权,我们不会在锁和解锁上出错。

2.Mutex<T>的API

作为展示如何使用互斥器的例子,让我们从在单线程上下文使用互斥器开始, 看下面的代码:

use std::sync::Mutex;fn main() {let m = Mutex::new(5);{let mut num = m.lock().unwrap();*num = 6;}println!("m = {:?}", m);
}

像很多类型一样,我们使用关联函数 new 来创建一个 Mutex<T>。使用 lock 方法获取锁,以访问互斥器中的数据。这个调用会阻塞当前线程,直到我们拥有锁为止。

如果另一个线程拥有锁,并且那个线程 panic 了,则 lock 调用会失败。在这种情况下,没人能够再获取锁,所以这里选择 unwrap 并在遇到这种情况时使线程 panic。

一旦获取了锁,就可以将返回值(在这里是num)视为一个其内部数据的可变引用了。类型系统确保了我们在使用 m 中的值之前获取锁。m 的类型是 Mutex<i32> 而不是 i32,所以 必须 获取锁才能使用这个 i32 值。我们是不会忘记这么做的,因为反之类型系统不允许访问内部的 i32 值。

Mutex<T> 是一个智能指针。更准确的说,lock 调用 返回 一个叫做 MutexGuard 的智能指针。这个智能指针实现了 Deref 来指向其内部数据;其也提供了一个 Drop 实现当 MutexGuard 离开作用域时自动释放锁,为此,我们不会忘记释放锁并阻塞互斥器为其它线程所用的风险,因为锁的释放是自动发生的。

丢弃了锁之后,可以打印出互斥器的值,并发现能够将其内部的 i32 改为 6。

3.在线程间共享Mutex<T>

现在让我们尝试使用 Mutex<T> 在多个线程间共享值。我们将启动十个线程,并在各个线程中对同一个计数器值加一,这样计数器将从 0 变为 10。看下面的代码:

use std::sync::Mutex;
use std::thread;fn main() {let counter = Mutex::new(0);let mut handles = vec![];for _ in 0..10 {let handle = thread::spawn(move || {let mut num = counter.lock().unwrap();*num += 1;});handles.push(handle);}for handle in handles {handle.join().unwrap();}println!("Result: {}", *counter.lock().unwrap());
}

这里创建了一个 counter 变量来存放内含 i32Mutex<T>, 接下来遍历 range 创建了 10 个线程。使用了 thread::spawn 并对所有线程使用了相同的闭包:它们每一个都将调用 lock 方法来获取 Mutex<T> 上的锁,接着将互斥器中的值加一。当一个线程结束执行,num 会离开闭包作用域并释放锁,这样另一个线程就可以获取它了。

在主线程中,我们收集了所有的 join 句柄, 调用它们的 join 方法来确保所有线程都会结束。这时,主线程会获取锁并打印出程序的结果。

编译上面的代码, Rust编译器报了一个错误:

错误信息表明 counter 值在上一次循环中被移动了。所以 Rust 告诉我们不能将 counter 锁的所有权移动到多个线程中。下面来看看如何修复这个错误。

4.多线程和多所有权

我们先尝试将Mutex<T>封装进Rc<T>中并在将所有权移入线程之前克隆Rc<T>,看下面代码:

use std::rc::Rc;
use std::sync::Mutex;
use std::thread;fn main() {let counter = Rc::new(Mutex::new(0));let mut handles = vec![];for _ in 0..10 {let counter = Rc::clone(&counter);let handle = thread::spawn(move || {let mut num = counter.lock().unwrap();*num += 1;});handles.push(handle);}for handle in handles {handle.join().unwrap();}println!("Result: {}", *counter.lock().unwrap());
}

再一次编译代码,纳尼, 居然又报了另一个错误, 成年人的崩溃谁能懂:

Rc<Mutex<i32>>` cannot be sent between threads safely`。这个错误编译器告诉我们原因是:`the trait `Send` is not implemented for `Rc<Mutex<i32>>

Rc<T> 并不能安全的在线程间共享。当 Rc<T> 管理引用计数时,它必须在每一个 clone 调用时增加计数,并在每一个克隆被丢弃时减少计数。Rc<T> 并没有使用任何并发原语,来确保改变计数的操作不会被其他线程打断。在计数出错时可能会导致诡异的 bug,比如可能会造成内存泄漏,或在使用结束之前就丢弃一个值。我们所需要的是一个完全类似 Rc<T>,又以一种线程安全的方式改变引用计数的类型。

5.原子引用计数Arc<T>

在Rust标准库中, 提供了一个名为Arc<T>的类型, 这是一个可以安全的用于并发环境的类型, 字母 “a” 代表 原子性atomic),所以这是一个 原子引用计数atomically reference counted)类型, 将代码修改为:

use std::sync::{Arc, Mutex};
use std::thread;fn main() {let counter = Arc::new(Mutex::new(0));let mut handles = vec![];for _ in 0..10 {let counter = Arc::clone(&counter);let handle = thread::spawn(move || {let mut num = counter.lock().unwrap();*num += 1;});handles.push(handle);}for handle in handles {handle.join().unwrap();}println!("Result: {}", *counter.lock().unwrap());
}

再次编译代码, 执行结果如下:

这次终于得到结果10, 程序从0数到10, 虽然过程看上去并不明显, 但我们却学到了很多关于Mutex<T>和线程安全的内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/191292.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

stm32超声波测距不准的解决方法(STM32 delay_us()产生1us)及stm32智能小车超声波测距代码(C语言版本)

首先要说明一下原理&#xff1a;使用stm32无法准确产生1us的时间&#xff0c;但是超声波测距一定要依赖时间&#xff0c;时间不准&#xff0c;距离一定不准&#xff0c;这是要肯定的&#xff0c;但是在不准确的情况下&#xff0c;要测量一个比较准确的时间&#xff0c;那么只能…

PHP中$_SERVER全局变量

在PHP中&#xff0c;$_SERVER 是一个全局数组变量&#xff0c;它包含了有关服务器和当前脚本的信息。$_SERVER 数组中的每个元素都是服务器环境的一个参数&#xff0c;如请求的方法、请求的 URI、客户端 IP 地址等。 PATH 系统环境变量的值&#xff0c;包含了多个目录的路径…

【Word自定义配置,超简单,图文并茂】自定义Word中的默认配置,比如标题大小与颜色(参考科研作图配色),正文字体等

▚ 01 自定义样式Styles中的默认标题模板 &#x1f4e2;自定义标题的显示效果&#xff0c;如下图所示&#xff1a; 1.1 自定义标题的模板Normal.dotm 1.1.1 选择所需修改的标题 新建一个空白Word文档&#xff0c;依次选择菜单栏的开始Home&#xff0c;样式Styles&#xff0c;…

Python生成随机数插件Faker的用法

目录 引言 一、Faker库的安装 二、Faker库的基本用法 1、导入Faker类 2、创建Faker对象 3、使用Faker对象生成随机数据 三、Faker库的高级用法 1、自定义数据生成规则 2、使用子模块进行特定领域的数据生成 3、与其他库结合使用 四、Faker库的应用场景 1、单元测试…

TCP与UDP

文章目录 TCP与UDP传输层的作用端口号UDPTCPUDP首部的格式TCP首部格式 TCP与UDP TCP/IP中有两个具有代表性的传输层协议&#xff0c;它们分别是TCP和UDP。TCP提供可靠的通信传输&#xff0c;而UDP则常被用于让广播和细节控制交给应用的通信传输。总之&#xff0c;根据通信的具…

MTK Camera2 的OPEN API流程认知

MTK的设计架构 再了解Camera的open api调用之前我们&#xff0c;需要了解Camera的架构&#xff0c;这样才能提高阅读代码的效率。 代码跟读&#xff1a; 在这个图中大致介绍了OpenCamera的具体调用&#xff0c;下面我们逐步分析Camera的open调用流程。 逐步分析 一、 我们抛…

如何使用PHPStudy本地快速搭建网站并实现远程访问

文章目录 [toc]使用工具1. 本地搭建web网站1.1 下载phpstudy后解压并安装1.2 打开默认站点&#xff0c;测试1.3 下载静态演示站点1.4 打开站点根目录1.5 复制演示站点到站网根目录1.6 在浏览器中&#xff0c;查看演示效果。 2. 将本地web网站发布到公网2.1 安装cpolar内网穿透2…

Flutter笔记:绘图示例 - 一个简单的(Canvas )时钟应用

Flutter笔记 绘图示例 - 一个简单的&#xff08;Canvas &#xff09;时钟应用 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_2855…

【算法|动态规划 | 区间dp No.2】AcWing 1068.环形石子合并

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【AcWing算法提高学习专栏】【手撕算法系列专栏】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&a…

内衣洗衣机和手洗哪个干净?好用的内衣洗衣机推荐

在日常生活中&#xff0c;我们的衣服不可避免地会沾染上各种细菌、毛发和污渍&#xff0c;将它们与贴身衣物混合清洗&#xff0c;很容易发生交叉感染&#xff0c;而被感染后&#xff0c;贴身衣物也有可能导致我们人体引起皮肤病。这也是为什么大部分人都喜欢用手洗的原因&#…

Android WebView专题

WebView 专题 第一个WebView程序&#xff1a;加载远程网址 Layout添加WebView组件&#xff1b; <WebViewandroid:id"id/webView_first"android:layout_width"match_parent"android:layout_height"match_parent"/>初始化组件&#xff0c;加…

Socket网络编程(服务端和客户端代码示例)

本文主要讲解Socket网络编程。 首先介绍socket&#xff0c;包括TCP和UDP通信过程&#xff1b;然后介绍常用的函数&#xff1b;最后编写client-server例子&#xff0c;并进行测试。 文章目录 Socket介绍TCP通信过程服务器端通信过程&#xff1a;客户端通信过程&#xff1a; UDP通…

SA实战 ·《SpringCloud Alibaba实战》第13章-服务网关:项目整合SpringCloud Gateway网关

大家好,我是冰河~~ 一不小心[SpringCloud Alibaba实战》专栏都更新到第13章了,再不上车就跟不上了,小伙伴们快跟上啊! 在《SpringCloud Alibaba实战》专栏前面的文章中,我们实现了用户微服务、商品微服务和订单微服务之间的远程调用,并且实现了服务调用的负载均衡。也基于…

FusionDiff:第一个基于扩散模型实现的多聚焦图像融合的论文

文章目录 1. 论文介绍2. 研究动机3. 模型结构3.1 网络架构3.2 前向扩散过程3.3 逆向扩散过程3.4 训练和推理过程 4. 小样本学习4. 实验结果 1. 论文介绍 题目&#xff1a;FusionDiff: Multi-focus image fusion using denoising diffusion probabilistic models 作者&#xf…

【Mysql系列】Mysql基础篇

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

Smart Link 和 Monitor Link应用

定义 Smart Link常用于双上行链路组网&#xff0c;提高接入的可靠性。 Monitor Link通过监视上行接口&#xff0c;使下行接口同步上行接口状态&#xff0c;起到传递故障信息的作用。 Smart Link&#xff0c;又叫做备份链路。一个Smart Link由两个接口组成&#xff0c;其中一个…

医用污水处理一体化设备怎么选

选择医用污水处理一体化设备时&#xff0c;可以从以下几个方面进行考虑&#xff1a; 设备材质&#xff1a;选择耐腐蚀、耐磨损、抗老化的材质&#xff0c;例如不锈钢、玻璃钢等。同时要确保设备罐体的抗压性能。工艺流程&#xff1a;选择高效、稳定、安全的工艺流程&#xff0…

智慧渔业捕捞计数项目设计书

&#xff08;一&#xff09;项目背景 根据捕捞水域的不同&#xff0c;我国水产捕捞可划分为海洋捕捞、远洋捕捞以及淡水捕捞三大类型。其中&#xff0c;淡水渔业主要是指在淡水水域进行捕捞、养殖以获得淡水水产品并对这些水产品进行加工的社会生产领域。 近年来&#xff0c;随…

vim相关命令讲解!

本文旨在讲解vim 以及其相关的操作&#xff01; 希望读完本文&#xff0c;读者会有一定的收获&#xff01;好的&#xff0c;干货马上就来&#xff01; 初识vim 在讲解vim之前&#xff0c;我们首先要了解vim是什么&#xff0c;有什么作用&#xff1f;只有了解了vim才能更好的理…

【Amazon】云上探索实验室—了解 AI 编程助手 Amazon Codewhisperer

文章目录 一、前言&#x1f4e2;二、关于云上探索实验室&#x1f579;️三、领学员需要做什么&#xff1f;✴️四、领学员能获得什么&#xff1f;&#x1f523;五、学课通道入口&#x1f447;1️⃣CSDN平台2️⃣网易云课堂3️⃣Skill Builder 平台 六、活动详情链接 一、前言&a…