1.共享状态并发
虽然消息传递是一个很好的处理并发的方式,但并不是唯一一个。另一种方式是让多个线程拥有相同的共享数据。在学习Go语言编程过程中大家应该听到过一句口号:"不要通过共享内存来通讯"。
在某种程度上,任何编程语言中的信道都类似于单所有权,因为一旦将一个值传送到信道中,将无法再使用这个值。共享内存类似于多所有权:多个线程可以同时访问相同的内存位置。第十五章介绍了智能指针如何使得多所有权成为可能,然而这会增加额外的复杂性,因为需要以某种方式管理这些不同的所有者。Rust 的类型系统和所有权规则极大的协助了正确地管理这些所有权。作为一个例子,让我们看看互斥器,一个更为常见的共享内存并发原语。
互斥器(mutex)是 mutual exclusion 的缩写,也就是说,任意时刻,其只允许一个线程访问某些数据。为了访问互斥器中的数据,线程首先需要通过获取互斥器的 锁(lock)来表明其希望访问数据。锁是一个作为互斥器一部分的数据结构,它记录谁有数据的排他访问权。因此,我们描述互斥器为通过锁系统 保护(guarding)其数据。
互斥器以难以使用著称,因为你不得不记住:
-
在使用数据之前尝试获取锁。
-
处理完被互斥器所保护的数据之后,必须解锁数据,这样其他线程才能够获取锁。
作为一个现实中互斥器的例子,想象一下在某个会议的一次小组座谈会中,只有一个麦克风。如果一位成员要发言,他必须请求或表示希望使用麦克风。一旦得到了麦克风,他可以畅所欲言,然后将麦克风交给下一位希望讲话的成员。如果一位成员结束发言后忘记将麦克风交还,其他人将无法发言。如果对共享麦克风的管理出现了问题,座谈会将无法如期进行!
正确的管理互斥器异常复杂,这也是许多人之所以热衷于信道的原因。然而,在 Rust 中,得益于类型系统和所有权,我们不会在锁和解锁上出错。
2.Mutex<T>的API
作为展示如何使用互斥器的例子,让我们从在单线程上下文使用互斥器开始, 看下面的代码:
use std::sync::Mutex;fn main() {let m = Mutex::new(5);{let mut num = m.lock().unwrap();*num = 6;}println!("m = {:?}", m);
}
像很多类型一样,我们使用关联函数 new
来创建一个 Mutex<T>
。使用 lock
方法获取锁,以访问互斥器中的数据。这个调用会阻塞当前线程,直到我们拥有锁为止。
如果另一个线程拥有锁,并且那个线程 panic 了,则 lock
调用会失败。在这种情况下,没人能够再获取锁,所以这里选择 unwrap
并在遇到这种情况时使线程 panic。
一旦获取了锁,就可以将返回值(在这里是num
)视为一个其内部数据的可变引用了。类型系统确保了我们在使用 m
中的值之前获取锁。m
的类型是 Mutex<i32>
而不是 i32
,所以 必须 获取锁才能使用这个 i32
值。我们是不会忘记这么做的,因为反之类型系统不允许访问内部的 i32
值。
Mutex<T>
是一个智能指针。更准确的说,lock
调用 返回 一个叫做 MutexGuard
的智能指针。这个智能指针实现了 Deref
来指向其内部数据;其也提供了一个 Drop
实现当 MutexGuard
离开作用域时自动释放锁,为此,我们不会忘记释放锁并阻塞互斥器为其它线程所用的风险,因为锁的释放是自动发生的。
丢弃了锁之后,可以打印出互斥器的值,并发现能够将其内部的 i32
改为 6。
3.在线程间共享Mutex<T>
现在让我们尝试使用 Mutex<T>
在多个线程间共享值。我们将启动十个线程,并在各个线程中对同一个计数器值加一,这样计数器将从 0 变为 10。看下面的代码:
use std::sync::Mutex;
use std::thread;fn main() {let counter = Mutex::new(0);let mut handles = vec![];for _ in 0..10 {let handle = thread::spawn(move || {let mut num = counter.lock().unwrap();*num += 1;});handles.push(handle);}for handle in handles {handle.join().unwrap();}println!("Result: {}", *counter.lock().unwrap());
}
这里创建了一个 counter
变量来存放内含 i32
的 Mutex<T>
, 接下来遍历 range 创建了 10 个线程。使用了 thread::spawn
并对所有线程使用了相同的闭包:它们每一个都将调用 lock
方法来获取 Mutex<T>
上的锁,接着将互斥器中的值加一。当一个线程结束执行,num
会离开闭包作用域并释放锁,这样另一个线程就可以获取它了。
在主线程中,我们收集了所有的 join 句柄, 调用它们的 join
方法来确保所有线程都会结束。这时,主线程会获取锁并打印出程序的结果。
编译上面的代码, Rust编译器报了一个错误:
错误信息表明 counter
值在上一次循环中被移动了。所以 Rust 告诉我们不能将 counter
锁的所有权移动到多个线程中。下面来看看如何修复这个错误。
4.多线程和多所有权
我们先尝试将Mutex<T>封装进Rc<T>中并在将所有权移入线程之前克隆Rc<T>,看下面代码:
use std::rc::Rc;
use std::sync::Mutex;
use std::thread;fn main() {let counter = Rc::new(Mutex::new(0));let mut handles = vec![];for _ in 0..10 {let counter = Rc::clone(&counter);let handle = thread::spawn(move || {let mut num = counter.lock().unwrap();*num += 1;});handles.push(handle);}for handle in handles {handle.join().unwrap();}println!("Result: {}", *counter.lock().unwrap());
}
再一次编译代码,纳尼, 居然又报了另一个错误, 成年人的崩溃谁能懂:
Rc<Mutex<i32>>` cannot be sent between threads safely`。这个错误编译器告诉我们原因是:`the trait `Send` is not implemented for `Rc<Mutex<i32>>
。
Rc<T>
并不能安全的在线程间共享。当 Rc<T>
管理引用计数时,它必须在每一个 clone
调用时增加计数,并在每一个克隆被丢弃时减少计数。Rc<T>
并没有使用任何并发原语,来确保改变计数的操作不会被其他线程打断。在计数出错时可能会导致诡异的 bug,比如可能会造成内存泄漏,或在使用结束之前就丢弃一个值。我们所需要的是一个完全类似 Rc<T>
,又以一种线程安全的方式改变引用计数的类型。
5.原子引用计数Arc<T>
在Rust标准库中, 提供了一个名为Arc<T>的类型, 这是一个可以安全的用于并发环境的类型, 字母 “a” 代表 原子性(atomic),所以这是一个 原子引用计数(atomically reference counted)类型, 将代码修改为:
use std::sync::{Arc, Mutex};
use std::thread;fn main() {let counter = Arc::new(Mutex::new(0));let mut handles = vec![];for _ in 0..10 {let counter = Arc::clone(&counter);let handle = thread::spawn(move || {let mut num = counter.lock().unwrap();*num += 1;});handles.push(handle);}for handle in handles {handle.join().unwrap();}println!("Result: {}", *counter.lock().unwrap());
}
再次编译代码, 执行结果如下:
这次终于得到结果10, 程序从0数到10, 虽然过程看上去并不明显, 但我们却学到了很多关于Mutex<T>和线程安全的内容。