STM32 Flash详解教程文章

 目录

Flash基本概念理解

Flash编程接口FPEC

Flash擦除/写入流程图

Flash选项字节基本概念理解

Flash电子签名

函数读取地址下存放的数据

Flash的数据处理限制部分


                                            编写不易,请勿搬运,感谢理解!!!

Flash基本概念理解

        STM32的Flash里面包含,程序存储器系统存储器选项字节,通过对Flash闪存的片上外设接口(接口地址在ram地址),可以对程序存储器跟选项字节进行擦除和编程。

·程序存储器:用来下载存放程序的位置

·系统存储器:用来存放BootoLoader芯片出厂自带程序

·选项字节:用来配置Flash读保护,写保护,等功能

        其常见在程序中的用法是,通过程序软件编程利用内部Flash数据掉电不丢失的特性与内部Flash通常不用使用完,将重要的参数存储在Flash的最后几页内

        和使用指针指向系统存储区域内,芯片的ID号地址,读取属于芯片自己的ID号,通过利用芯片不同的ID号,在程序执行时判断芯片ID号,如果不同则不执行程序,来实现程序只能在特定芯片上运行。

        最后一种用法就是通过对Flash的选项字节配置,来完成程序的读保护跟写保护,在程序中来配置。

                                                        flash分配地址详解

        在STM32F1系列芯片中,其中Flash每页的起始地址后三位均以 000 400 800 C00 开头。

Flash编程接口FPEC

        Flash编程控制器 FPEC 全称是 Flash Program/Erase Controller 用于对Flash存储器进行读写和擦除的硬件模块。该模块包含7个32位寄存器。

·FPEC键寄存器(FLASH_KEYR):用于解锁FPEC外设,允许进行Flash编程或擦除操作

·选择字节键寄存器(FLASH_OPTKEYR):用于解锁Flash选项字节的修改操作

·闪存控制寄存器(FLASH_CR):控制Flash编程和擦除操作的核心寄存器

·闪存状态寄存器(FLASH_SR):指示Flash当前状态和操作结果

·闪存地址寄存器(FLASH_AR):指定Flash操作的目标地址

·选择字节寄存器(FLASH_OBR):读取选项字节当前的配置状态

·写保护寄存器(FLASH_WRPR):指示和配置Flash的写保护状态

        7个寄存器中需要注意的是,Flash_SR寄存器的BSY位,当该位为1的时候代表正在进行flash操作,当为0的时候代表操作结束或者发生错误,通常来读取该位的值来判断flash操作是否完成结束。

        Flash_CR寄存器的PG位代表是否选择编程操作,PER位是否选择页擦除操作,MER位是否选择全擦除操作,OPTPG选择字节编程,OPTER擦除选择字节,STRT开始操作,该位为1的时候将触发擦除操作,只能由软件置1并在BSY为1的时候清除为0,LOCK锁为1代表FPEC和Flash_CR被锁住,为0代表解锁成功。

                                                            寄存器地址范围图

        在芯片复位后,FPEC模块是被保护的,Flash_CR寄存器不能被读写操作,首先需要对,Flash_KEYR写入特定键值KEY1  KEY2 来完成解锁操作,如果写入错误会在下次复位之前锁死,FPEC跟Flash_CR寄存器。

·RDPRT键 = 0x000000A5    //解除读保护

·KEY1 = 0x45670123           //KEY1+KEY2解除FPEC锁

·KEY2 = 0xCDEF89AB

        需要注意的是,在解锁FPEC对Flash_CR寄存器操作完成对Flash的读|写之后,需要设置Flash_CR中的LOCK位锁住FPEC跟Flash_CR位,来防止数据的误写入导致对Flash进行操作。

Flash擦除/写入流程图

                                                Flash写入数据流程图

                                                        Flash页擦除流程图

                                                        Flash全擦除流程图

        在三张流程图中只有擦除流程图需要置Flash_CR寄存器的STRT位为1,在上文有介绍过当为1的时候会执行擦除操作,然后当Flash_SR寄存器的BSY为0的是时候会将STRT位置0。

Flash选项字节基本概念理解

       在芯片地址中给选项字节分配了16个字节的地址,其中8个字节的地址用来备份,当前选项字节的数据,只有8个字节用来配置Flash选项字节。其中四个字节用来写保护,1个字节用来读保护,1个字节配置选项,2个字节存储用户数据。  

                                                        分配地址图

       需要注意的是,在完成对FPEC的解锁之后,还需要再次对Flash_OPTKKEYR写入KEY1 KEY2来完成对选项字节的解锁,同事置Flash_CR的OPTWRE位为1才能对选项字节进行写入操作。 

         

·RDP:写入RDPRT键(0x000000A5)后解除读保护

·USER:硬件看门狗配置 停机模式|待机模式 是否产生复位

·Data:用户自定义数据

·WRP:该位置用来配置写保护

Flash电子签名

        电子签名是芯片出厂的时候由芯片制造商写入的信息,存放地址实在系统存储区域,用来表示芯片的唯一性跟芯片的flash容量大小。

·0x1FFFF7E0 ~ 0x1FFFF7E3 存放flash大小

·0x1FFFF7E8 ~ 0x1FFFF7EF 存储 UID。

        其中UID Uniqune Device ID 唯一设备标识,共96位12字节改信息用户不可更改,可以利用指针进行访问。

函数读取地址下存放的数据

       上文中提到了在大多数单片机程序中因为自身Flash没有被使用完,因此可以对剩余Flash空间进行读写数据操作函数如下。

uint32_t FlashR_Word(uint32_t address)
{return *((__IO uint32_t *)(address))
}

        函数中__IO来自官方定义库文件定义如下

#define __IO  voliate

        将宏定义带入到函数中就能得到下面代码

(__IO uint32_t *)(address) = (volitate uint32_t *)(address)

        改代码作用是将函数局部变量参数转化为指向该参数的uint32_t,指针类型,同时括号外面的*就是指针解引用的意思,就是返回指针指向该地址下的数值,这里因为声明的指针类型为uint32_t类型所以就能返回一个字的地址。

        也就是32位数据,4个字节的数据,同理可以得到读取16位数据的函数,还有读取一个字节的函数,只要把函数内声明的指针类型给改了就行了

uint16_t FlashR_HWord(uint32_t address)
{return *((__IO uint16_t *)(address))
}uint8_t FlashR_Byte(uint32_t address)
{return *((__IO uint8_t *)(address))
}
//这里因为改变了 内部声明的指针类型 跟返回值类型所以能获取的数据大小也被限制了

Flash的数据处理限制部分

        在对Flash进行数据存储的通常情况下需要再程序中定义一个 uint16_t data[512] 数组,大小是1024也就是一个Flash页面大小,先将数据写入ram的数组里面然后再写入Flash里面进行存储,通常这种情况是因为Flash本身的写入限制问题。

       首先Flash擦除的最小单位是页,同时在Flash进行写入的时候不存在数据覆盖这种写法,也就是将数据0x12345对改地址重新写入数据0x56787是写不进去的是因为Flash中的数据只能从1->0,而不能从0->1,而在擦除完单页Flash之后,该页存储的数据全部为0xFFFF FFFF 也就是全部是1。

        这就导致了如果直接对Flash进行数据写入,会发现在数据写入到最后的时候如果想要更改前面的数据大概率是需要擦除才能进行写入的,但是如果进行擦除其他位的数据又丢失,所以通常常用的数据数据手段也就是。

        将Flash单页数据读出保存在一个Flash页大小的数组里面进行更改数据,然后将整页数据重新写入到Flash数组里面来完成操作,跟将需要写入的数据先在数组里面进行覆盖,最后统一写入Flash里面。

Step 1:先从 Flash 读取数据到 RAM
Step 2:在 RAM 修改数据
Step 3:擦除 整个 Flash Page(Flash 只能整页擦除)。
Step 4:将 RAM 数据重新写入 Flash

#include "stm32f10x.h"
#include "Store.h"
#include "MyFlash.h"
//数组内512个数据 每个数据类型是 uint16_t 也就是2个字节 数组能存放1024字节数据 也就是对应Flash一页的容量
uint16_t Store_Data[512];
//在ram 里面定义一个数组 需要备份的时候统一转到闪存里面
void Flash_Init(void)
{if(Flash_WHWord(0x08000000)!=0xA5A5){Earse_FlashPage(0x08000000);Flash_WHWord(0x08000000 ,0xA5A5 );for(uint16_t i = 1;i<512;i++){Flash_WHWord(0x08000000 +i*2 ,0x0000 );}}//将Flash里面数据保存读到ram里面for(uint16_t i = 0; i<512;i++){Store_Data[i] = FlashRH_Word(0x08000000 + i*2);}
}
void Flash_Save(void)
{//先擦除Flash在进行写入,不然会发现写不进去Earse_FlashPage(0x08000000);for(uint16_t i = 0;i<512;i++){Flash_WHWord(0x08000000 + i*2,Store_Data[i] );}
}
//函数用来清除数组 Flash里面的数据
void Flah_Clear(void)
{for(uint16_t i = 0;i<512;i++){Store_Data[i] = 0x0000;}Flash_Save();
}

                                                                代码部分

        这里需要注意的是i*2问题,因为在Flash里面最小写入单元跟最小存储单元室一个半字,也就是16位,4个字节,举个例子就是0x0800 0000是单元起始地址,到0x0800 0001 地址该单元结束,该地址指向存储单元,每个地址指向的存储单元能够存储 2个字节。

        所以在数据数据进行写入的时候,地址的起始地址都是用2的倍数开头的,因为像0x0800 0001这种是不合法地址,是没有办法进行写入半字数据。

        这种用法通常是用在单片机程序很小,自身Flash占用不完的情况下使用,而有没有办法知道自己的程序占用多少字节,同时改变程序烧录的位置,无论程序大小都不能烧录到自己保存数据的Flash数据部分这种方法也是有的。

                                        查看程序自身大小方法图

        魔术棒里面有程序的起始地址还有结束地址,只要把在Keil5里面可以更改这两个地址从而达到更改程序的烧录地址的效果。

                                欢迎指正,希望对你,有所帮助!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/19145.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高精度 A+B Problem

题目描述 高精度加法&#xff0c;相当于 ab problem&#xff0c;不用考虑负数。 输入格式 分两行输入。a,b ≤ 。 输出格式 输出只有一行&#xff0c;代表 ab 的值。 输入输出样例 输入 #1 1 1 输出 #1 2 输入 #2 1001 9099 输出 #2 10100 #include<iostream…

spring boot单元测试

在pom文件中添加测试依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency> 复制粘贴自动创建的单元测试类 文件名改为HelloCo…

A Unified Model for Multi-class Anomaly Detection

多类别异常检测的统一模型 文章链接&#xff1a;点这里 源码链接&#xff1a;点这里 研究目的 1.解决多类别异常检测的挑战 现有的异常检测方法通常需要为每个类别单独训练模型&#xff0c;如Figure1图(c)所示&#xff0c;这种方法在类别数量增加时会消耗大量资源&#xff…

封装neo4j的持久层和服务层

目录 持久层 mp 模仿&#xff1a; 1.抽取出通用的接口类 2.创建自定义的repository接口 服务层 mp 模仿&#xff1a; 1.抽取出一个IService通用服务类 2.创建ServiceImpl类实现IService接口 3.自定义的服务接口 4.创建自定义的服务类 工厂模式 为什么可以使用工厂…

2024各地低空经济政策汇编资料

互联网各领域资料分享专区(不定期更新)&#xff1a; Sheet 前言 由于内容较多&#xff0c;且不便于排版&#xff0c;为避免资源失效&#xff0c;请用手机点击链接进行保存&#xff0c;若链接生效请及时反馈&#xff0c;谢谢~ 正文 链接如下&#xff08;为避免资源失效&#x…

基于JAVA的幼儿园管理系统的设计与实现源码(springboot+vue+mysql)

项目简介 幼儿园管理系统实现了以下功能&#xff1a; 基于JAVA的幼儿园管理系统的设计与实现的主要使用者管理员可以管理系统基本信息&#xff1b;管理轮播图、系统简介、教师管理、课程管理、幼儿活动管理、餐饮管理、留言管理等功能&#xff1b;前台用户注册登录&#xff0…

智能车摄像头开源—8 元素处理

目录 一、前言 二、无元素状态 三、直线与弯道 四、十字与环岛 1、十字识别处理 2、环岛识别处理 五、坡道 六、障碍物 七、斑马线 八、入库 九、出界停车 一、前言 在写这篇文章之前&#xff0c;考虑了很久到底该写到什么程度&#xff0c;但思来想去&#xff0c;不同…

LC-随机链表的复制、排序链表、合并K个升序链表、LRU缓存

随机链表的复制 为了在 O(n) 时间复杂度内解决这个问题&#xff0c;并且使用 O(1) 的额外空间&#xff0c;可以利用以下技巧&#xff1a; 将新节点插入到原节点后面&#xff1a;我们可以将复制节点插入到原节点后面。例如&#xff0c;如果链表是 A -> B -> C&#xff0c…

编码格式大全:类型 特点及其在网络安全中的作用

目录 说明: 1. Base64 Base64编码的字符集通常包括&#xff1a; Base64的工作原理&#xff1a; Base64编码在安全渗透中的应用场景 常见的Base64编码绕过场景 如何防范Base64绕过攻击 2. URL编码&#xff08;Percent Encoding&#xff09; URL编码与安全渗透的关系 示…

BGP分解实验·18——BGP选路原则之权重

在本地对进入的NLRI做权重设置&#xff0c;从而对过滤特定的路由进行优选。严格来说&#xff0c;权重值并不能算是路径属性&#xff0c;因为它并处传递&#xff0c;所能影响的仅仅限于本地路由器。 实验拓扑如下&#xff1a; 完成实验拓扑的基础实验&#xff0c;R1的配置如下…

pandas(13 Caveats Gotchas和SQL比较)

前面内容&#xff1a;pandas(12 IO工具和稀松数据) 目录 一、Caveats警告 & Gotchas预见 1.1 在Pandas中使用if/Truth语句 1.2 位运算布尔 1.3 isin操作 1.4 重新索引reindex和 loc&iloc 使用注意事项 1.5 loc和iloc 二、Python Pandas 与SQL的比较 2.1 数…

FPGA的星辰大海

编者按 时下风头正盛的DeepSeek,正值喜好宏大叙事的米国大统领二次上岗就业,OpenAI、软银、甲骨文等宣布投资高达5000亿美元“星际之门”之际,对比尤为强烈。 某种程度上,,是低成本创新理念的直接落地。 包括来自开源社区的诸多赞誉是,并非体现技术有多“超越”,而是…

AI大模型的文本流如何持续吐到前端,实时通信的技术 SSE(Server-Sent Events) 认知

写在前面 没接触过 SSE&#xff08;Server-Sent Events&#xff09;&#xff0c;AI大模型出来之后&#xff0c;一直以为文本流是用 WebSocket 做的偶然看到返回到报文格式是 text/event-stream,所以简单认知&#xff0c;整理笔记博文内容涉及 SSE 认知&#xff0c;以及对应的 D…

大学信息安全技术 期末考试复习题

一、单选题&#xff08;一&#xff09; 1、在以下人为的恶意攻击行为中&#xff0c;属于主动攻击的是&#xff08; &#xff09;A A&#xff0e;数据篡改及破坏 B&#xff0e;数据窃听 C&#xff0e;数据流分析 D&#xff0e;非法访问 2、数据完整性指的是&#xff08; &#x…

CES 2025 上的创新方案——无电池智能纸尿裤-AP4470

这款纸尿裤采用了可重复使用的组件&#xff0c;通过检测液体的存在来增强老年人和婴儿的护理&#xff0c;即使电极上滴了几滴液体也是如此。 其原理为尿液中的水分作为电解液&#xff0c;将尿布里安装的两种导电性材料作为正负极&#xff0c;充当电池&#xff0c;从而产生300m…

C++17中的LegacyContiguousIterator(连续迭代器)

文章目录 特点内存连续性与指针的兼容性更高的性能 适用场景与C接口交互高性能计算 支持连续迭代器的容器示例代码性能优势缓存局部性指针算术优化 注意事项总结 在C17标准里&#xff0c;LegacyContiguousIterator&#xff08;连续迭代器&#xff09;是一类特殊的迭代器。它不仅…

小白win10安装并配置yt-dlp

需要yt-dlp和ffmpeg 注意存放路径最好都是全英文 win10安装并配置yt-dlp 一、下载1.下载yt-dlp2. fffmpeg下载 二、配置环境三、cmd操作四、yt-dlp下视频操作 一、下载 1.下载yt-dlp yt-dlp地址 找到win的压缩包点下载&#xff0c;并解压 2. fffmpeg下载 ffmpeg官方下载 …

【线性代数】2矩阵

1.矩阵的运算 1.1.定义 矩阵行列式数表数行数和列数可以不相等行数和列数必须相等1.2.加法与数乘 矩阵的数乘:所有元素都乘这个数 矩阵的加法:对应位置处元素相加 🦊已知,求 1.3.乘法 矩阵乘法三步法 ①能不能乘:内定乘 ②乘完是何类型:外定型 ③中的元素是什么:左…

【Leetcode 952】按公因数计算最大组件大小

题干 给定一个由不同正整数的组成的非空数组 nums &#xff0c;考虑下面的图&#xff1a; 有 nums.length 个节点&#xff0c;按从 nums[0] 到 nums[nums.length - 1] 标记&#xff1b;只有当 nums[i] 和 nums[j] 共用一个大于 1 的公因数时&#xff0c;nums[i] 和 nums[j]之…

DeepSeek-R1 大模型本地部署指南

文章目录 一、系统要求硬件要求软件环境 二、部署流程1. 环境准备2. 模型获取3. 推理代码配置4. 启动推理服务 三、优化方案1. 显存优化技术2. 性能加速方案 四、部署验证健康检查脚本预期输出特征 五、常见问题解决1. CUDA内存不足2. 分词器警告处理3. 多GPU部署 六、安全合规…