第三天课程 RabbitMQ

RabbitMQ

1.初识MQ

1.1.同步和异步通讯

微服务间通讯有同步和异步两种方式:

同步通讯:就像打电话,需要实时响应。

异步通讯:就像发邮件,不需要马上回复。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送邮件可以同时与多个人收发邮件,但是往往响应会有延迟。

1.1.1.同步通讯

我们之前学习的Feign调用就属于同步方式,虽然调用可以实时得到结果,但存在下面的问题:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

总结:

同步调用的优点:

  • 时效性较强,可以立即得到结果

同步调用的问题:

  • 耦合度高
  • 性能和吞吐能力下降
  • 有额外的资源消耗
  • 有级联失败问题

1.1.2.异步通讯

异步调用则可以避免上述问题:

我们以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓库分配响应的库存并准备发货。

在事件模式中,支付服务是事件发布者(publisher),在支付完成后只需要发布一个支付成功的事件(event),事件中带上订单id。

订单服务和物流服务是事件订阅者(Consumer),订阅支付成功的事件,监听到事件后完成自己业务即可。

为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间人(Broker)。发布者发布事件到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Broker 是一个像数据总线一样的东西,所有的服务要接收数据和发送数据都发到这个总线上,这个总线就像协议一样,让服务间的通讯变得标准和可控。

好处:

  • 吞吐量提升:无需等待订阅者处理完成,响应更快速

  • 故障隔离:服务没有直接调用,不存在级联失败问题

  • 调用间没有阻塞,不会造成无效的资源占用

  • 耦合度极低,每个服务都可以灵活插拔,可替换

  • 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件

缺点:

  • 架构复杂了,业务没有明显的流程线,不好管理
  • 需要依赖于Broker的可靠、安全、性能

好在现在开源软件或云平台上 Broker 的软件是非常成熟的,比较常见的一种就是我们今天要学习的MQ技术。

1.2.技术对比:

MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。

比较常见的MQ实现:

  • ActiveMQ
  • RabbitMQ
  • RocketMQ
  • Kafka

几种常见MQ的对比:

RabbitMQActiveMQRocketMQKafka
公司/社区RabbitApache阿里Apache
开发语言ErlangJavaJavaScala&Java
协议支持AMQP,XMPP,SMTP,STOMPOpenWire,STOMP,REST,XMPP,AMQP自定义协议自定义协议
可用性一般
单机吞吐量一般非常高
消息延迟微秒级毫秒级毫秒级毫秒以内
消息可靠性一般一般

追求可用性:Kafka、 RocketMQ 、RabbitMQ

追求可靠性:RabbitMQ、RocketMQ

追求吞吐能力:RocketMQ、Kafka

追求消息低延迟:RabbitMQ、Kafka

2.快速入门

2.1.安装RabbitMQ

安装RabbitMQ,参考课前资料:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

MQ的基本结构:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

RabbitMQ中的一些角色:

  • publisher:生产者
  • consumer:消费者
  • exchange个:交换机,负责消息路由
  • queue:队列,存储消息
  • virtualHost:虚拟主机,隔离不同租户的exchange、queue、消息的隔离

2.2.RabbitMQ消息模型

RabbitMQ官方提供了5个不同的Demo示例,对应了不同的消息模型:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.3.导入Demo工程

课前资料提供了一个Demo工程,mq-demo:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

导入后可以看到结构如下:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

包括三部分:

  • mq-demo:父工程,管理项目依赖
  • publisher:消息的发送者
  • consumer:消息的消费者

2.4.入门案例

简单队列模式的模型图:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

官方的HelloWorld是基于最基础的消息队列模型来实现的,只包括三个角色:

  • publisher:消息发布者,将消息发送到队列queue
  • queue:消息队列,负责接受并缓存消息
  • consumer:订阅队列,处理队列中的消息

2.4.1.publisher实现

思路:

  • 建立连接
  • 创建Channel
  • 声明队列
  • 发送消息
  • 关闭连接和channel

代码实现:

package cn.itcast.mq.helloworld;import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import org.junit.Test;import java.io.IOException;
import java.util.concurrent.TimeoutException;public class PublisherTest {@Testpublic void testSendMessage() throws IOException, TimeoutException {// 1.建立连接ConnectionFactory factory = new ConnectionFactory();// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码factory.setHost("192.168.150.101");factory.setPort(5672);factory.setVirtualHost("/");factory.setUsername("itcast");factory.setPassword("123321");// 1.2.建立连接Connection connection = factory.newConnection();// 2.创建通道ChannelChannel channel = connection.createChannel();// 3.创建队列String queueName = "simple.queue";channel.queueDeclare(queueName, false, false, false, null);// 4.发送消息String message = "hello, rabbitmq!";channel.basicPublish("", queueName, null, message.getBytes());System.out.println("发送消息成功:【" + message + "】");// 5.关闭通道和连接channel.close();connection.close();}
}

2.4.2.consumer实现

代码思路:

  • 建立连接
  • 创建Channel
  • 声明队列
  • 订阅消息

代码实现:

package cn.itcast.mq.helloworld;import com.rabbitmq.client.*;import java.io.IOException;
import java.util.concurrent.TimeoutException;public class ConsumerTest {public static void main(String[] args) throws IOException, TimeoutException {// 1.建立连接ConnectionFactory factory = new ConnectionFactory();// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码factory.setHost("192.168.150.101");factory.setPort(5672);factory.setVirtualHost("/");factory.setUsername("itcast");factory.setPassword("123321");// 1.2.建立连接Connection connection = factory.newConnection();// 2.创建通道ChannelChannel channel = connection.createChannel();// 3.创建队列String queueName = "simple.queue";channel.queueDeclare(queueName, false, false, false, null);// 4.订阅消息channel.basicConsume(queueName, true, new DefaultConsumer(channel){@Overridepublic void handleDelivery(String consumerTag, Envelope envelope,AMQP.BasicProperties properties, byte[] body) throws IOException {// 5.处理消息String message = new String(body);System.out.println("接收到消息:【" + message + "】");}});System.out.println("等待接收消息。。。。");}
}

2.5.总结

基本消息队列的消息发送流程:

  1. 建立connection

  2. 创建channel

  3. 利用channel声明队列

  4. 利用channel向队列发送消息

基本消息队列的消息接收流程:

  1. 建立connection

  2. 创建channel

  3. 利用channel声明队列

  4. 定义consumer的消费行为handleDelivery()

  5. 利用channel将消费者与队列绑定

3.SpringAMQP

SpringAMQP是基于RabbitMQ封装的一套模板,并且还利用SpringBoot对其实现了自动装配,使用起来非常方便。

SpringAmqp的官方地址:https://spring.io/projects/spring-amqp

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

SpringAMQP提供了三个功能:

  • 自动声明队列、交换机及其绑定关系
  • 基于注解的监听器模式,异步接收消息
  • 封装了RabbitTemplate工具,用于发送消息

3.1.Basic Queue 简单队列模型

在父工程mq-demo中引入依赖

<!--AMQP依赖,包含RabbitMQ-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

3.1.1.消息发送

首先配置MQ地址,在publisher服务的application.yml中添加配置:

spring:rabbitmq:host: 192.168.150.101 # 主机名port: 5672 # 端口virtual-host: / # 虚拟主机username: itcast # 用户名password: 123321 # 密码

然后在publisher服务中编写测试类SpringAmqpTest,并利用RabbitTemplate实现消息发送:

package cn.itcast.mq.spring;import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringAmqpTest {@Autowiredprivate RabbitTemplate rabbitTemplate;@Testpublic void testSimpleQueue() {// 队列名称String queueName = "simple.queue";// 消息String message = "hello, spring amqp!";// 发送消息rabbitTemplate.convertAndSend(queueName, message);}
}

3.1.2.消息接收

首先配置MQ地址,在consumer服务的application.yml中添加配置:

spring:rabbitmq:host: 192.168.150.101 # 主机名port: 5672 # 端口virtual-host: / # 虚拟主机username: itcast # 用户名password: 123321 # 密码

然后在consumer服务的cn.itcast.mq.listener包中新建一个类SpringRabbitListener,代码如下:

package cn.itcast.mq.listener;import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;@Component
public class SpringRabbitListener {@RabbitListener(queues = "simple.queue")public void listenSimpleQueueMessage(String msg) throws InterruptedException {System.out.println("spring 消费者接收到消息:【" + msg + "】");}
}

3.1.3.测试

启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息

3.2.WorkQueue

Work queues,也被称为(Task queues),任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。

此时就可以使用work 模型,多个消费者共同处理消息处理,速度就能大大提高了。

3.2.1.消息发送

这次我们循环发送,模拟大量消息堆积现象。

在publisher服务中的SpringAmqpTest类中添加一个测试方法:

/*** workQueue* 向队列中不停发送消息,模拟消息堆积。*/
@Test
public void testWorkQueue() throws InterruptedException {// 队列名称String queueName = "simple.queue";// 消息String message = "hello, message_";for (int i = 0; i < 50; i++) {// 发送消息rabbitTemplate.convertAndSend(queueName, message + i);Thread.sleep(20);}
}

3.2.2.消息接收

要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:

@RabbitListener(queues = "simple.queue")
public void listenWorkQueue1(String msg) throws InterruptedException {System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(20);
}@RabbitListener(queues = "simple.queue")
public void listenWorkQueue2(String msg) throws InterruptedException {System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(200);
}

注意到这个消费者sleep了1000秒,模拟任务耗时。

3.2.3.测试

启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue。

可以看到消费者1很快完成了自己的25条消息。消费者2却在缓慢的处理自己的25条消息。

也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。这样显然是有问题的。

3.2.4.能者多劳

在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:

spring:rabbitmq:listener:simple:prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息

3.2.5.总结

Work模型的使用:

  • 多个消费者绑定到一个队列,同一条消息只会被一个消费者处理
  • 通过设置prefetch来控制消费者预取的消息数量

3.3.发布/订阅

发布订阅的模型如图:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:

  • Publisher:生产者,也就是要发送消息的程序,但是不再发送到队列中,而是发给X(交换机)
  • Exchange:交换机,图中的X。一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。Exchange有以下3种类型:
    • Fanout:广播,将消息交给所有绑定到交换机的队列
    • Direct:定向,把消息交给符合指定routing key 的队列
    • Topic:通配符,把消息交给符合routing pattern(路由模式) 的队列
  • Consumer:消费者,与以前一样,订阅队列,没有变化
  • Queue:消息队列也与以前一样,接收消息、缓存消息。

Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!

3.4.Fanout

Fanout,英文翻译是扇出,我觉得在MQ中叫广播更合适。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在广播模式下,消息发送流程是这样的:

  • 1) 可以有多个队列
  • 2) 每个队列都要绑定到Exchange(交换机)
  • 3) 生产者发送的消息,只能发送到交换机,交换机来决定要发给哪个队列,生产者无法决定
  • 4) 交换机把消息发送给绑定过的所有队列
  • 5) 订阅队列的消费者都能拿到消息

我们的计划是这样的:

  • 创建一个交换机 itcast.fanout,类型是Fanout
  • 创建两个队列fanout.queue1和fanout.queue2,绑定到交换机itcast.fanout

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3.4.1.声明队列和交换机

Spring提供了一个接口Exchange,来表示所有不同类型的交换机:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在consumer中创建一个类,声明队列和交换机:

package cn.itcast.mq.config;import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.FanoutExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class FanoutConfig {/*** 声明交换机* @return Fanout类型交换机*/@Beanpublic FanoutExchange fanoutExchange(){return new FanoutExchange("itcast.fanout");}/*** 第1个队列*/@Beanpublic Queue fanoutQueue1(){return new Queue("fanout.queue1");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue1(Queue fanoutQueue1, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);}/*** 第2个队列*/@Beanpublic Queue fanoutQueue2(){return new Queue("fanout.queue2");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue2(Queue fanoutQueue2, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);}
}

3.4.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

@Test
public void testFanoutExchange() {// 队列名称String exchangeName = "itcast.fanout";// 消息String message = "hello, everyone!";rabbitTemplate.convertAndSend(exchangeName, "", message);
}

3.4.3.消息接收

在consumer服务的SpringRabbitListener中添加两个方法,作为消费者:

@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueue1(String msg) {System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
}@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueue2(String msg) {System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
}

3.4.4.总结

交换机的作用是什么?

  • 接收publisher发送的消息
  • 将消息按照规则路由到与之绑定的队列
  • 不能缓存消息,路由失败,消息丢失
  • FanoutExchange的会将消息路由到每个绑定的队列

声明队列、交换机、绑定关系的Bean是什么?

  • Queue
  • FanoutExchange
  • Binding

3.5.Direct

在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在Direct模型下:

  • 队列与交换机的绑定,不能是任意绑定了,而是要指定一个RoutingKey(路由key)
  • 消息的发送方在 向 Exchange发送消息时,也必须指定消息的 RoutingKey
  • Exchange不再把消息交给每一个绑定的队列,而是根据消息的Routing Key进行判断,只有队列的Routingkey与消息的 Routing key完全一致,才会接收到消息

案例需求如下

  1. 利用@RabbitListener声明Exchange、Queue、RoutingKey

  2. 在consumer服务中,编写两个消费者方法,分别监听direct.queue1和direct.queue2

  3. 在publisher中编写测试方法,向itcast. direct发送消息

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3.5.1.基于注解声明队列和交换机

基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。

在consumer的SpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机:

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue1"),exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),key = {"red", "blue"}
))
public void listenDirectQueue1(String msg){System.out.println("消费者接收到direct.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue2"),exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),key = {"red", "yellow"}
))
public void listenDirectQueue2(String msg){System.out.println("消费者接收到direct.queue2的消息:【" + msg + "】");
}

3.5.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

@Test
public void testSendDirectExchange() {// 交换机名称String exchangeName = "itcast.direct";// 消息String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "red", message);
}

3.5.3.总结

描述下Direct交换机与Fanout交换机的差异?

  • Fanout交换机将消息路由给每一个与之绑定的队列
  • Direct交换机根据RoutingKey判断路由给哪个队列
  • 如果多个队列具有相同的RoutingKey,则与Fanout功能类似

基于@RabbitListener注解声明队列和交换机有哪些常见注解?

  • @Queue
  • @Exchange

3.6.Topic

3.6.1.说明

Topic类型的ExchangeDirect相比,都是可以根据RoutingKey把消息路由到不同的队列。只不过Topic类型Exchange可以让队列在绑定Routing key 的时候使用通配符!

Routingkey 一般都是有一个或多个单词组成,多个单词之间以”.”分割,例如: item.insert

通配符规则:

#:匹配一个或多个词

*:匹配不多不少恰好1个词

举例:

item.#:能够匹配item.spu.insert 或者 item.spu

item.*:只能匹配item.spu

图示:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

解释:

  • Queue1:绑定的是china.# ,因此凡是以 china.开头的routing key 都会被匹配到。包括china.news和china.weather
  • Queue2:绑定的是#.news ,因此凡是以 .news结尾的 routing key 都会被匹配。包括china.news和japan.news

案例需求:

实现思路如下:

  1. 并利用@RabbitListener声明Exchange、Queue、RoutingKey

  2. 在consumer服务中,编写两个消费者方法,分别监听topic.queue1和topic.queue2

  3. 在publisher中编写测试方法,向itcast. topic发送消息

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3.6.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

/*** topicExchange*/
@Test
public void testSendTopicExchange() {// 交换机名称String exchangeName = "itcast.topic";// 消息String message = "喜报!孙悟空大战哥斯拉,胜!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "china.news", message);
}

3.6.3.消息接收

在consumer服务的SpringRabbitListener中添加方法:

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue1"),exchange = @Exchange(name = "itcast.topic", type = ExchangeTypes.TOPIC),key = "china.#"
))
public void listenTopicQueue1(String msg){System.out.println("消费者接收到topic.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue2"),exchange = @Exchange(name = "itcast.topic", type = ExchangeTypes.TOPIC),key = "#.news"
))
public void listenTopicQueue2(String msg){System.out.println("消费者接收到topic.queue2的消息:【" + msg + "】");
}

3.6.4.总结

描述下Direct交换机与Topic交换机的差异?

  • Topic交换机接收的消息RoutingKey必须是多个单词,以 **.** 分割
  • Topic交换机与队列绑定时的bindingKey可以指定通配符
  • #:代表0个或多个词
  • *:代表1个词

3.7.消息转换器

之前说过,Spring会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:

  • 数据体积过大
  • 有安全漏洞
  • 可读性差

我们来测试一下。

3.7.1.测试默认转换器

我们修改消息发送的代码,发送一个Map对象:

@Test
public void testSendMap() throws InterruptedException {// 准备消息Map<String,Object> msg = new HashMap<>();msg.put("name", "Jack");msg.put("age", 21);// 发送消息rabbitTemplate.convertAndSend("simple.queue","", msg);
}

停止consumer服务

发送消息后查看控制台:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3.7.2.配置JSON转换器

显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。

在publisher和consumer两个服务中都引入依赖:

<dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</artifactId><version>2.9.10</version>
</dependency>

配置消息转换器。

在启动类中添加一个Bean即可:

@Bean
public MessageConverter jsonMessageConverter(){return new Jackson2JsonMessageConverter();
}

还会把字节反序列化为Java对象。

[外链图片转存中…(img-3qscSmHo-1699967566495)]

只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:

  • 数据体积过大
  • 有安全漏洞
  • 可读性差

我们来测试一下。

3.7.1.测试默认转换器

我们修改消息发送的代码,发送一个Map对象:

@Test
public void testSendMap() throws InterruptedException {// 准备消息Map<String,Object> msg = new HashMap<>();msg.put("name", "Jack");msg.put("age", 21);// 发送消息rabbitTemplate.convertAndSend("simple.queue","", msg);
}

停止consumer服务

发送消息后查看控制台:

[外链图片转存中…(img-kvXdWKmF-1699967566496)]

3.7.2.配置JSON转换器

显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。

在publisher和consumer两个服务中都引入依赖:

<dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</artifactId><version>2.9.10</version>
</dependency>

配置消息转换器。

在启动类中添加一个Bean即可:

@Bean
public MessageConverter jsonMessageConverter(){return new Jackson2JsonMessageConverter();
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/193175.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据库事务相关问题

1. 什么是数据库事务&#xff1f; 事务&#xff0c;由一个有限的数据库操作序列构成&#xff0c;这些操作要么全部执行,要么全部不执行&#xff0c;是一个不可分割的工作单位。 假如A转账给B 100 元&#xff0c;先从A的账户里扣除 100 元&#xff0c;再在 B 的账户上加上 100 …

python自动化第一篇—— 带图文的execl的自动化合并

简述 最近接到一个需求&#xff0c;需要为公司里的一个部门提供一个文件上传自动化合并的系统&#xff0c;以供用户稽核&#xff0c;谈到自动化&#xff0c;肯定是选择python&#xff0c;毕竟python的轮子多。比较了市面上几个用得多的python库&#xff0c;我最终选择了xlwings…

SOME/IP学习笔记3

目录 1.SOMEIP Transformer 1.1 SOME/IP on-wire format 1.2 协议指定 2. SOMEIP TP 2.1 SOME/IP TP Header 3.小结 1.SOMEIP Transformer 根据autosar CP 相关规范&#xff0c;SOME/IP Transformer主要用于将SOME/IP格式的数据序列化&#xff0c;相当于一个转换器。总体…

uniapp+vite+vue3开发跨平台app,运行到安卓模拟器调试方法

因为没有使用hbuilder开发uniapp&#xff0c;而是使用了vscode和vite来开发的&#xff0c;所以怎么将这个程序运行到安卓模拟器调试开发呢&#xff1f;其实方法很简单&#xff0c;使用android studio创建一个模拟器或者其他mumu模拟器&#xff0c;然后将项目使用hbuilder打开&a…

macos死机后IDEA打不开,Cannot connect to already running IDE instance.

Cannot connect to already running IDE instance. Exception: Process 573 is still running 解决办法 进入&#xff1a;/Users/lzq/Library/Application Support/JetBrains 找到IDEA的目录删除隐藏文件夹 .lock rm -rf .lock

黑马程序员微服务 第五天课程 分布式搜索引擎2

分布式搜索引擎02 在昨天的学习中&#xff0c;我们已经导入了大量数据到elasticsearch中&#xff0c;实现了elasticsearch的数据存储功能。但elasticsearch最擅长的还是搜索和数据分析。 所以今天&#xff0c;我们研究下elasticsearch的数据搜索功能。我们会分别使用DSL和Res…

入选《人工智能领域内容榜》

入选《人工智能领域内容榜》第 23名 C# OpenCvSharp DNN HybridNets 同时处理车辆检测、可驾驶区域分割、车道线分割-CSDN博客

Playwright UI 自动化测试实战

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

Semantic Kernel 学习笔记1

1. 挂代理跑通openai API 2. 无需魔法跑通Azure API 下载Semantic Kernel的github代码包到本地&#xff0c;主要用于方便学习python->notebooks文件夹中的内容。 1. Openai API&#xff1a;根据上述文件夹中的.env.example示例创建.env文件&#xff0c;需要填写下方两个内…

Vue 简单的语法

1.插值表达式 1.插值表达式的作用是什么&#xff1f; 利用表达式进行插值&#xff0c;将数据渲染到页面中&#xff1b; 2.语法结构&#xff1f; {{表达式}} 3.插值表达式的注意点是什么&#xff1f; &#xff08;1&#xff09;使用的数据要存在&#xff0c;在data中&…

错误:ERROR:torch.distributed.elastic.multiprocessing.api:failed

在多卡运行时&#xff0c;会出现错误&#xff08;ERROR:torch.distributed.elastic.multiprocessing.api:failed&#xff09;&#xff0c;但是单卡运行并不会报错&#xff0c;通常在反向梯度传播时多卡梯度不同步。但我是在多卡处理数据进行tokenizer阶段报错&#xff0c;这竟然…

仿真算法收敛与初值的关系

问题&#xff1a; 当电路中存在大电容时&#xff0c;由于初值设置不合理可能导致的仿真算法不收敛的问题。 解决方法&#xff1a;设置初始节点值。 疑问&#xff1a;Node set和Initial Condition的区别。 [求助] node set 和initial condition有很么区别呢&#xff1f; 注&…

Kafka 的应用场景

Kafka 是一个开源的分布式流式平台&#xff0c;它可以处理大量的实时数据&#xff0c;并提供高吞吐量&#xff0c;低延迟&#xff0c;高可靠性和高可扩展性。 Kafka 最初是为分布式系统中海量日志处理而设计的。它可以通过持久化功能将消息保存到磁盘&#xff0c;并让消费者按…

Xshell+Xftp通过代理的方式访问局域网内网服务器

最近在部署项目时遇到只有1台服务器拥有公网ip&#xff0c;其它服务器只有局域网ip&#xff0c;当然其它服务器可以正常访问网络&#xff0c;例如如下模型。之前访问其它几台服务器&#xff0c;都是先通过登录公网IP服务器&#xff0c;然后在Xshell里面执行ssh远程连接&#xf…

uniapp: 实现pdf预览功能

目录 第一章 实现效果 第二章 了解并解决需求 2.1 了解需求 2.2 解决需求 2.2.1 方法一 2.2.2 方法二 第三章 资源下载 第一章 实现效果 第二章 了解并解决需求 2.1 了解需求 前端需要利用后端传的pdf临时路径实现H5端以及app端的pdf预览首先我们别像pc端一样&#…

单相过压继电器DVR-G-100-1 0~500V AC/DC220V 导轨安装

系列型号 DVR-G-100-1X3数字式过压继电器&#xff1b; DVR-G-100-3三相过压继电器&#xff1b; DVR(H)-G-100-1单相过压继电器&#xff1b; DVR-Q-100-3三相欠压继电器&#xff1b; DVR(H)-Q-100-3三相欠压继电器 一、用途 主要应用于电机、变压器等主设备以及输配电系统的继…

实现高值医疗耗材智能化管理的RFID医疗柜解决方案

一、行业背景 医疗物资管理面临着一系列问题&#xff0c;如高值耗材种类激增导致准入标准弱化、信息追踪困难、管理责任不明确等&#xff0c;医院内部设备、财务和临床科室相互独立&#xff0c;兼容性不佳&#xff0c;高值耗材储备不足&#xff0c;缺乏合理的预警机制&#xf…

libusb获取Windows设备实例路径DevicePath

libusb 当前版本&#xff08;1.0.26&#xff09;libusb.h 头文件提供的接口似乎没有办法获取 Windows 平台相关的设备实例路径&#xff0c;其形如&#xff1a; \\?\usb#vid_04ca&pid_7070#5&20d34a76&0&6#{a5dcbf10-6530-11d2-901f-00c04fb951ed} 只是提供了…

浙江大学数据结构陈越 第一讲 数据结构和算法

数据结构 数据结构是计算机科学中用来组织和存储数据的方式。它可以理解为一种组织数据的方式&#xff0c;能够有效地管理和操作数据&#xff0c;以及提供对数据进行存储、检索、更新和删除等操作的方法。常见的数据结构包括数组、链表、栈、队列、树和图等&#xff0c;它们各自…

盘点30个Python树莓派源码Python爱好者不容错过

盘点30个Python树莓派源码Python爱好者不容错过 学习知识费力气&#xff0c;收集整理更不易。 知识付费甚欢喜&#xff0c;为咱码农谋福利。 链接&#xff1a;https://pan.baidu.com/s/1LA4cLunntKW3qO5aok3xAQ?pwd8888 提取码&#xff1a;8888 项目名称 PiCar-raspber…