(Transfer Learning)迁移学习在IMDB上训练情感分析模型

1. 背景

有些场景下,开始的时候数据量很小,如果我们用一个几千条数据训练一个全新的深度机器学习的文本分类模型,效果不会很好。这个时候你有两种选择,1.用传统的机器学习训练,2.利用迁移学习在一个预训练的模型上训练。本博客教你怎么用tensorflow Hub和keras 在少量的数据上训练一个文本分类模型。

2. 实践

2.1. 下载IMDB 数据集,参考下面博客。

Imdb影评的数据集介绍与下载_imdb影评数据集-CSDN博客

2.2.  预处理数据

替换掉imdb目录 (imdb_raw_data_dir). 创建dataset目录。

import numpy as np
import os as osimport re
from sklearn.model_selection import train_test_splitvocab_size = 30000
maxlen = 200
imdb_raw_data_dir = "/Users/harry/Documents/apps/ml/aclImdb"
save_dir = "dataset"def get_data(datapath =r'D:\train_data\aclImdb\aclImdb\train' ):pos_files = os.listdir(datapath + '/pos')neg_files = os.listdir(datapath + '/neg')print(len(pos_files))print(len(neg_files))pos_all = []neg_all = []for pf, nf in zip(pos_files, neg_files):with open(datapath + '/pos' + '/' + pf, encoding='utf-8') as f:s = f.read()s = process(s)pos_all.append(s)with open(datapath + '/neg' + '/' + nf, encoding='utf-8') as f:s = f.read()s = process(s)neg_all.append(s)print(len(pos_all))# print(pos_all[0])print(len(neg_all))X_orig= np.array(pos_all + neg_all)# print(X_orig)Y_orig = np.array([1 for _ in range(len(pos_all))] + [0 for _ in range(len(neg_all))])print("X_orig:", X_orig.shape)print("Y_orig:", Y_orig.shape)return X_orig, Y_origdef generate_dataset():X_orig, Y_orig = get_data(imdb_raw_data_dir + r'/train')X_orig_test, Y_orig_test = get_data(imdb_raw_data_dir + r'/test')X_orig = np.concatenate([X_orig, X_orig_test])Y_orig = np.concatenate([Y_orig, Y_orig_test])X = X_origY = Y_orignp.random.seed = 1random_indexs = np.random.permutation(len(X))X = X[random_indexs]Y = Y[random_indexs]X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3)print("X_train:", X_train.shape)print("y_train:", y_train.shape)print("X_test:", X_test.shape)print("y_test:", y_test.shape)np.savez(save_dir + '/train_test', X_train=X_train, y_train=y_train, X_test= X_test, y_test=y_test )def rm_tags(text):re_tag = re.compile(r'<[^>]+>')return re_tag.sub(' ', text)def clean_str(string):string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)string = re.sub(r"\'s", " \'s", string)  # it's -> it 'sstring = re.sub(r"\'ve", " \'ve", string) # I've -> I 'vestring = re.sub(r"n\'t", " n\'t", string) # doesn't -> does n'tstring = re.sub(r"\'re", " \'re", string) # you're -> you arestring = re.sub(r"\'d", " \'d", string)  # you'd -> you 'dstring = re.sub(r"\'ll", " \'ll", string) # you'll -> you 'llstring = re.sub(r"\'m", " \'m", string) # I'm -> I 'mstring = re.sub(r",", " , ", string)string = re.sub(r"!", " ! ", string)string = re.sub(r"\(", " \( ", string)string = re.sub(r"\)", " \) ", string)string = re.sub(r"\?", " \? ", string)string = re.sub(r"\s{2,}", " ", string)return string.strip().lower()def process(text):text = clean_str(text)text = rm_tags(text)#text = text.lower()return  textif __name__ == '__main__':generate_dataset()

执行完后,产生train_test.npz 文件

2.3.  训练模型

1. 取数据集

def get_dataset_to_train():train_test = np.load('dataset/train_test.npz', allow_pickle=True)x_train =  train_test['X_train']y_train = train_test['y_train']x_test =  train_test['X_test']y_test = train_test['y_test']return x_train, y_train, x_test, y_test

2. 创建模型

基于nnlm-en-dim50/2 预训练的文本嵌入向量,在模型外面加了两层全连接。

def get_model():hub_layer = hub.KerasLayer(embedding_url, input_shape=[], dtype=tf.string, trainable=True)# Build the modelmodel = Sequential([hub_layer,Dense(16, activation='relu'),Dropout(0.5),Dense(2, activation='softmax')])print(model.summary())model.compile(optimizer=keras.optimizers.Adam(),loss=keras.losses.SparseCategoricalCrossentropy(),metrics=[keras.metrics.SparseCategoricalAccuracy()])return model

还可以使用来自 TFHub 的许多其他预训练文本嵌入向量:

  • google/nnlm-en-dim128/2 - 基于与 google/nnlm-en-dim50/2 相同的数据并使用相同的 NNLM 架构进行训练,但具有更大的嵌入向量维度。更大维度的嵌入向量可以改进您的任务,但可能需要更长的时间来训练您的模型。
  • google/nnlm-en-dim128-with-normalization/2 - 与 google/nnlm-en-dim128/2 相同,但具有额外的文本归一化,例如移除标点符号。如果您的任务中的文本包含附加字符或标点符号,这会有所帮助。
  • google/universal-sentence-encoder/4 - 一个可产生 512 维嵌入向量的更大模型,使用深度平均网络 (DAN) 编码器训练。

还有很多!在 TFHub 上查找更多文本嵌入向量模型。

3. 评估你的模型

def evaluate_model(test_data, test_labels):model = load_trained_model()# Evaluate the modelresults = model.evaluate(test_data, test_labels, verbose=2)print("Test accuracy:", results[1])def load_trained_model():# model = get_model()# model.load_weights('./models/model_new1.h5')model = tf.keras.models.load_model('models_pb')return model

4. 测试几个例子

def predict(real_data):model  = load_trained_model()probabilities = model.predict([real_data]);print("probabilities :",probabilities)result =  get_label(probabilities)return resultdef get_label(probabilities):index = np.argmax(probabilities[0])print("index :" + str(index))result_str =  index_dic.get(str(index))# result_str = list(index_dic.keys())[list(index_dic.values()).index(index)]return result_strdef predict_my_module():# review = "I don't like it"# review = "this is bad movie "# review = "This is good movie"review = " this is terrible movie"# review = "This isn‘t great movie"# review = "i think this is bad movie"# review = "I'm not very disappoint for this movie"# review = "I'm not very disappoint for this movie"# review = "I am very happy for this movie"#neg:0 postive:1s = predict(review)print(s)if __name__ == '__main__':x_train, y_train, x_test, y_test = get_dataset_to_train()model = get_model()model = train(model, x_train, y_train, x_test, y_test)evaluate_model(x_test, y_test)predict_my_module()

完整代码

import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout
import keras as keras
from keras.callbacks import EarlyStopping, ModelCheckpoint
import tensorflow_hub as hubembedding_url = "https://tfhub.dev/google/nnlm-en-dim50/2"index_dic = {"0":"negative", "1": "positive"}def get_dataset_to_train():train_test = np.load('dataset/train_test.npz', allow_pickle=True)x_train =  train_test['X_train']y_train = train_test['y_train']x_test =  train_test['X_test']y_test = train_test['y_test']return x_train, y_train, x_test, y_testdef get_model():hub_layer = hub.KerasLayer(embedding_url, input_shape=[], dtype=tf.string, trainable=True)# Build the modelmodel = Sequential([hub_layer,Dense(16, activation='relu'),Dropout(0.5),Dense(2, activation='softmax')])print(model.summary())model.compile(optimizer=keras.optimizers.Adam(),loss=keras.losses.SparseCategoricalCrossentropy(),metrics=[keras.metrics.SparseCategoricalAccuracy()])return modeldef train(model , train_data, train_labels, test_data, test_labels):# train_data, train_labels, test_data, test_labels = get_dataset_to_train()train_data = [tf.compat.as_str(tf.compat.as_bytes(str(x))) for x in train_data]test_data = [tf.compat.as_str(tf.compat.as_bytes(str(x))) for x in test_data]train_data = np.asarray(train_data)  # Convert to numpy arraytest_data = np.asarray(test_data)  # Convert to numpy arrayprint(train_data.shape, test_data.shape)early_stop = EarlyStopping(monitor='val_sparse_categorical_accuracy', patience=4, mode='max', verbose=1)# 定义ModelCheckpoint回调函数# checkpoint = ModelCheckpoint( './models/model_new1.h5', monitor='val_sparse_categorical_accuracy', save_best_only=True,#                              mode='max', verbose=1)checkpoint_pb = ModelCheckpoint(filepath="./models_pb/",  monitor='val_sparse_categorical_accuracy', save_weights_only=False, save_best_only=True)history = model.fit(train_data[:2000], train_labels[:2000], epochs=45, batch_size=45, validation_data=(test_data, test_labels), shuffle=True,verbose=1, callbacks=[early_stop, checkpoint_pb])print("history", history)return modeldef evaluate_model(test_data, test_labels):model = load_trained_model()# Evaluate the modelresults = model.evaluate(test_data, test_labels, verbose=2)print("Test accuracy:", results[1])def predict(real_data):model  = load_trained_model()probabilities = model.predict([real_data]);print("probabilities :",probabilities)result =  get_label(probabilities)return resultdef get_label(probabilities):index = np.argmax(probabilities[0])print("index :" + str(index))result_str =  index_dic.get(str(index))# result_str = list(index_dic.keys())[list(index_dic.values()).index(index)]return result_strdef load_trained_model():# model = get_model()# model.load_weights('./models/model_new1.h5')model = tf.keras.models.load_model('models_pb')return modeldef predict_my_module():# review = "I don't like it"# review = "this is bad movie "# review = "This is good movie"review = " this is terrible movie"# review = "This isn‘t great movie"# review = "i think this is bad movie"# review = "I'm not very disappoint for this movie"# review = "I'm not very disappoint for this movie"# review = "I am very happy for this movie"#neg:0 postive:1s = predict(review)print(s)if __name__ == '__main__':x_train, y_train, x_test, y_test = get_dataset_to_train()model = get_model()model = train(model, x_train, y_train, x_test, y_test)evaluate_model(x_test, y_test)predict_my_module()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/200007.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Qt QList和QMap容器类示例

## QList<T> QList<T>容器是一个数组列表,特点如下: 1.大多数情况下可以用QList。像prepend()、append()和insert()这种操作,通常QList比QVector快的多。这是因为QList是基于index标签存储它的元素项在内存中(虽然内存不连续,这点与STL的list 是一样的),比…

网络连接Android设备

参考&#xff1a;https://blog.csdn.net/qq_37858386/article/details/123755700 二、网络adb调试开启步骤 1、把Android平板或者手机WiFi连接到跟PC机子同一个网段的网络&#xff0c;在设置-系统-关于-状态 下面查看设备IP,然后查看PC是否可以ping通手机的设备的IP。 2、先…

深度学习人脸表情识别算法 - opencv python 机器视觉 计算机竞赛

文章目录 0 前言1 技术介绍1.1 技术概括1.2 目前表情识别实现技术 2 实现效果3 深度学习表情识别实现过程3.1 网络架构3.2 数据3.3 实现流程3.4 部分实现代码 4 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习人脸表情识别系…

口袋参谋:找关键词的三种方法!

​如何找热搜关键词&#xff1f;99%的商家都不知道。那么今天可以根据我说的三种方法去做。 第一种方法&#xff1a;利用竞争对手 通过分析竞争对手&#xff0c;正在使用和采取何种优化方法&#xff0c;来帮助你理解市场上正在流行什么样的关键字&#xff0c;这些热词可以直接从…

美国DDoS服务器:如何保护你的网站免遭攻击?

​  在当今数字化时代&#xff0c;互联网已经成为人们生活中不可或缺的一部分。随着互联网的普及和发展&#xff0c;网络安全问题也日益严重。其中&#xff0c;DDoS攻击是目前最常见和具有破坏性的网络攻击之一。那么&#xff0c;如何保护你的网站免遭DDoS攻击呢?下面将介绍…

自动化物流运输设备模组要选择哪种类型?

在自动化物流运输设备中&#xff0c;选择合适的模组类型取决于具体的运输需求和应用场景。 1、同步带模组&#xff1a;同步带模组是一种低噪音、低成本的物流运输设备&#xff0c;适用于中短距离、轻型货物的运输。它采用同步带传动的方式&#xff0c;具有传动准确、运行稳定、…

代码随想录二刷 | 链表 | 翻转链表

代码随想录二刷 &#xff5c; 链表 &#xff5c; 翻转链表 题目描述解题思路 & 代码实现双指针法递归法 206.翻转链表 题目描述 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4…

G管螺纹尺寸对照表

G管螺纹尺寸对照表 NPT 是 National (American) Pipe Thread 的缩写&#xff0c;属于美国标准的 60 度锥管螺纹&#xff0c;用于北美地区&#xff0e;国家标准可查阅 GB/T12716-1991 PT 是 Pipe Thread 的缩写&#xff0c;是 55 度密封圆锥管螺纹&#xff0c;属惠氏螺纹家族&a…

URDF文件

URDF&#xff08;Universal Robot Description Format&#xff09;&#xff1a;通用机器人描述格式&#xff0c;包含的内容有&#xff1a;连杆、关节&#xff0c;运动学和动力学参数、可视化模型、碰撞检测模型等。 父子关系树&#xff1a;连杆link1 --> 关节joint1 -->…

【TEC100TAI-KIT】青翼科技基于复微青龙JFMQL100TAI的全国产化智能异构计算平台

板卡概述 TEC100TAI-KIT是我司自主研制的一款基于上海复旦微电子复微青龙100TAI的全国产智能异构计算平台开发套件&#xff0c;该套件包含1个复微青龙100TAI核心板和1个PCIE规格的扩展底板。 该套件的核心板集成了100TAI的最小系统&#xff0c;包含一颗JFMQL100TAI900片上系统…

SpringCloud微服务:Nacos和Eureka的区别

目录 配置&#xff1a; 区别&#xff1a; ephemeral设置为true时 ephemeral设置为false时&#xff08;这里我使用的服务是order-service&#xff09; 1. Nacos与eureka的共同点 都支持服务注册和服务拉取 都支持服务提供者心跳方式做健康检测 2. Nacos与Eu…

阅读记录【arXiv2020】 Adaptive Personalized Federated Learning

Adaptive Personalized Federated Learning 论文地址&#xff1a; https://arxiv.org/abs/2003.13461 摘要 对联邦学习算法个性化程度的研究表明&#xff0c;只有最大化全局模型的性能才会限制局部模型的个性化能力。在本文中&#xff0c;我们提倡自适应个性化联合学习&…

纽扣电池/含纽扣电池产品上架亚马逊各国法规标准要求16 CFR 第 1700.15/20 ANSI C18.3M(瑞西法案认证)

亚马逊纽扣电池认证标准有哪些&#xff1f; 一、美国站&#xff08;亚马逊纽扣电池/含纽扣电池商品&#xff09;安全测试标准要求&#xff1a; 16 CFR 第 1700.15 、16 CFR 第 1700.20 ANSI C18.3M、警示标签声明要求&#xff08;第 117-171 号公众法&#xff09; 二、澳大…

【EI会议征稿】第四届公共管理与智能社会国际学术会议(PMIS 2024)

第四届公共管理与智能社会国际学术会议&#xff08;PMIS 2024) 2024 4th International Conference on Public Management and Intelligent Society 第四届公共管理与智能社会国际学术会议将在2024年3月15-17日在长沙召开。PMIS 2024由中南大学社会计算研究中心、中南大学公共…

Open AI开发者大会:AI“科技春晚”

ChatGPT的亮相即将满一年之时&#xff0c;OpenAI举行了自己的首次开发者大会。OpenAI首席执行官Sam Altman宣布推出最新的大模型GPT-4 Turbo。正如“Turbo”一词的中文含义“涡轮增压器”一样&#xff0c;本次发布会上&#xff0c;OpenAI的这款最新大模型在长文本、知识库、多模…

安装2023最新版PyCharm来开发Python应用程序

安装2023最新版PyCharm来开发Python应用程序 Install the Latest JetBrains PyCharm Community to Develop Python Applications Python 3.12.0最新版已经由其官网python.org发布&#xff0c;这也是2023年底的最新的版本。 0. PyCharm与Python 自从1991年2月20日&#xff0…

Chrome添加扩展程序

Crx4Chrome 下载crx 打开扩展程序 如果拖动crx文件到扩展程序提示只能通过Chrome应用商店添加此项内容 修改crx文件后缀为zip并解压&#xff0c;再拖动到扩展程序 Vue.js devtools

源启容器平台KubeGien 打造云原生转型的破浪之舰

云原生是应用上云的标准路径&#xff0c;也是未来发展大的趋势。如何将业务平滑过渡到云上&#xff1f;怎样应对上云期间的各项挑战呢&#xff1f;中电金信基于金融级数字底座“源启”打造了一款非常稳定可靠、多云异构、安全可控、开放灵活的容器平台产品——源启容器平台Kube…

Java_异常详解

前言 异常是什么,异常如何抛出,如何抛出自定义异常,异常处理主要的五个关键字&#xff1a;throw,try,catch,finally,throws ,异常的处理流程 异常是什么 在Java中&#xff0c;将程序执行过程中发生的不正常行为称为异常。比如之前写代码时经常遇到的&#xff1a; 1. 算数异…

CAD文件转奥维 转shapefile

之前写过一篇CAD转ArcGIS 其实万变不离其宗&#xff0c;都是经纬度知识的应用。 背景是当我们拿到一份带有坐标的CAD文件如何转换为矢量文件。 首先我们要明白XY坐标系的含义。 X—real X-500000 为近距离标准经线的距离。 y 为距离赤道的距离。 X 429174.3048 Y 32313…