redis的性能管理和雪崩

redis的性能管理

redis的数据是缓存在内存当中的

系统巡检:

硬件巡检、数据库、nginx、redis、docker、k8s

运维人员必须要关注的redis指标

在日常巡检中需要经常查看这些指标使用情况

info memory
#查看redis使用内存的指标
used_memory:11285512
#数据占用的内存(单位是字节)
used_memory_rss:24285184
#向操作系统申请的内存(单位是字节)
used_memory_peak:23952088
#redis使用内存的峰值(单位是字节)内存碎片率:used_mem0ry_rss/used_memory
#系统已经分配给了redis,但是未能够有效利用的内存

如何查看内存碎片率?

内存碎片率:used_mem0ry_rss/used_memory
#系统已经分配给了redis,但是未能够有效利用的内存redis-cli info memory | grep ratio
#查看内存碎片率allocator_frag_ratio:1.03
#分配器碎片比例。由redis主进程调度时产生的内存,比例越小越好,值越高,内存浪费越多。
allocator_rss_ratio:1.80
#表示分配器占用物理内存的比例,主进程调度过程中占用了多少物理内存
rss_overhead_ratio:1.13
#RSS是向系统申请的内存空间,redis占用物理空间额外的开销比例。比例越低越好。redis实际占用的物理内存和向系统申请的内存越接近额外的开销就越低
mem_fragmentation_ratio:2.16
#内存碎片的比例。值越低越好。表示内存的使用率越高

如何来进行清理碎片?

自动清理碎片
vim /etc/redis/6379.conf
最后一行插入
activedefrag yes
#自动清理碎片
/etc/init.d/redis_6379.conf restart
#重启redis服务手动清理碎片
redis-cli memory purge
#手动清理碎片

设置redis的最大内存阈值

vim /etc/redis/6379.conf
567行
maxmemory 1gb
#一旦到达阈值会开始自动清理,开启key的回收机制

key的回收机制是什么?

就是回收键值对

key回收的策略

vim /etc/redis/6379.conf598行
maxmemory-policy volatile-lru
#使用redis内置的LRU算法。把已经设置了过期时间的键值对淘汰出去。移除最近最少使用的键值对(只是针对已经设置了过期时间的键值对)maxmemory-policy volatile-ttl
#在已经设置了过期时间的键值对中,挑选一个即将过期的键值对(针对的是有设置生命周期的键值对)。maxmemory-policy volatile-random
#在已经设置了过期时间的键值对中,挑选数据然后随机淘汰一个键值对(对设置了过期时间的键值对进行随机移除)allkeys-lru
#根据redis内置的lru算法,对所有的键值对进行淘汰。移除最少使用的键值对。(针对所有的键值对)allkeys-random
#在所有键值对中,任意选择数据进行淘汰maxmemory-policy noeviction
#禁止对键值对回收(不删除任何键值对,知道redis把内存塞满,写不下,报错为止)

工作用要么保证数据完整性使用maxmemory-policy noeviction 要么使用maxmemory-policy volatile-ttl挑选一个即将过期的键值对清除

在工作当中一定要给redis占用内存设置阈值否则会将整个系统内存占满为止

redis的雪崩

缓存雪崩:大量的应用请求无法在redis缓存当中处理,请求会全部发送到后台数据库。数据库并发能力并发能力本身就差,数据库会很快崩溃

什么情况可能会导致雪崩出现?

1、 redis集群大面积故障

2、 redis缓存中,大量数据同时过期,大量的请求无法得到处理

3、 redis实例宕机

防止雪崩出现的方法

事前:高可用架构,防止整个缓存故障。主从复制和哨兵模式、redis集群

事中:在国内用得较多的方式:HySTRIX有三种方式:熔断、降级、限流。可以使用这三个手段来降低雪崩发生之后的损失。确保数据库不死即可,慢可以,但是不能没有响应。

事后:redis数据备份的方式来恢复数据或使用快速缓存预热的方式

redis的缓存击穿

缓存击穿主要是热点数据缓存过期或者被删除,多个请求并发访问热点数据。请求也是转发到后台数据库了,导致数据库的性能快速下降

经常被请求的缓存数据最好设置为永不过期

redis缓存穿透

缓存中没有数据,数据库中也没有对应数据,但是有用户一直发起这个没有的请求,而且请求的数据格式很大。

可能是黑客在利用漏洞攻击,压垮应用数据库。

redis的集群架构

高可用方案:

1、 持久化

2、 高可用:主从复制、哨兵模式、集群

主从复制

主从复制是redis实现高可用的基础,哨兵模式和集群都是在主从复制的基础上实现高可用。

主从复制实现数据的多机备份,以及读写分离(主服务器负责写,从服务器只能读)

缺陷:故障无法自动恢复,需要人工干预。无法实现写操作的负载均衡

主从复制的工作原理

1、 主节点(master)和从节点(slave)组成。数据的复制时单项的,只能从主节点到从节点。

主从复制节点最少要有三台

主从复制的数据流向和工作流程图:

1、 从与主建立连接。从会发送一个syn command,请求和主建立连接

2、 主节点收到请求之后,不管slave是第一次连接还是重新连接。主节点都会启动一个后台进程。执行BGsave。

3、 主节点会把所有修改数据记录的命令也加载到缓存和数据文件之中。

4、 数据文件创建完毕之后,是由主系欸但把数据文件传送给从节点,从节点会把数据文件保存到硬盘当中后再加载到内存中去。

主从复制推荐使用AOF,通过AOF文件实现实时持久化,主从节点都开启AOF持久化服务。从节点同步的就是aof文件。

主从复制工作流程图:

主从复制实验

实验准备:
20.0.0.26  master
20.0.0.27  slave1
20.0.0.28  slave2
三台机器都需要安装redis服务做完后拍个快照systemctl stop firewalld
setenforce 0
#关闭三台机器的防火墙和安全机制主节点:
vim /etc/redis/6379.conf
修改网段 0.0.0.0
daemonize yes
700行
开启aof模式
/etc/init.d/redis_6379 restart从节点1:
vim /etc/redis/6379.conf
修改网段 0.0.0.0
288行
replicaof <masterip> <masterport>
replicaof 20.0.0.26 6379
#指向主的ip和端口
700行
开启aof模式
/etc/init.d/redis_6379 restart
开启了指向后从节点将变为只读模式从节点2:
vim /etc/redis/6379.conf
修改网段 0.0.0.0
288行
replicaof <masterip> <masterport>
replicaof 20.0.0.26 6379
#指向主的ip和端口
700行
开启aof模式
/etc/init.d/redis_6379 restart
开启了指向后从节点将变为只读模式主节点:
tail -f /var/log/redis_6379.log
#查看主节点日志,看是否指向成功验证效果:
主从都登录redis
主节点:
set test1 1
#创建一个键值对
主上创建成功后到两台从节点查看一下看是否可以查看到从节点:
set test2 2
#在从节点上测试是否为只读模式
报错,说明搭建成功从节点已经设置为只读模式了实验完成!redis-cli info replication
#查看主从配置信息停止一个从节点来测试。停机期间插入的数据,服务重启后依旧可以同步

哨兵模式

哨兵模式依赖于主从模式,先有主从再有哨兵

哨兵模式是在主从复制的基础上实现主节点故障的自动切换

哨兵模式的工作原理

哨兵:是一个分布式系统。部署在每一个redis节点上用于在主从结构之间对每台redis的服务进行监控。

哨兵模式的投票机制

主节点出现故障时,从节点通过投票的方式选择一个新的master

哨兵模式也需要至少三个节点

哨兵模式的结构

哨兵节点和数据节点

哨兵节点:监控,不存储数据

数据节点:主节点和从节点,都是数据节点

哨兵模式的工作机制

哨兵模式的架构和工作机制图:

哨兵1节点会对应监控从节点1和从节点2

哨兵2节点会对应监控主节点和从节点2

哨兵3节点会监控主节点和从节点1

哨兵节点会互相监控架构内的其他节点主机

哨兵模式的投票机制:

1、 每个哨兵节点每隔1秒,通过ping命令的方式检测主从之间的心跳线。

2、 当主节点在一定时间内没有回复或者回复了错误的信息。哨兵会主观的认为主节点下线了。

3、 当有超过半数的哨兵节点认为主节点下线了,才会认为主节点是客观下线了

主节点选举过程:

哨兵节点会通过redis自带的raft算法(选举算法),每个节点共同投票,选举出一个新的master。

新的master来实现主节点的转移和故障恢复通知

1、 已经下线的从节点,不会被选择为主节点

2、 选择配置文件当中,从节点优先级最高的 replica-priority 100

3、 选择一个复制数据最完整的从节点

哨兵模式监控的是节点不是哨兵

故障恢复可能会优点延迟

最好是以复制数据最完整的从节点作为新的主节点

哨兵模式实验

主节点:
cd redis-5.0.7
vim sentinel.conf
#哨兵模式的配置文件17行
protected-mode no
#解除注释daemonize yes
#开启后台运行逃兵模式36行
logfile "/var/log/sentinel.log"
#指定日志文件的存放位置65行
dir"/var/lib/redis/6379"
#指定数据库存放的位置85行
sentinel monitor mymaster 20.0.0.26 6379 2
#声明主节点的IP和端口号.2代表至少要有2台服务认为主已经下线才会进行主从切换。一般配置为主从服务器的一半113行
sentinel down-after-milliseconds mymaster 30000
#服务器宕机的最小时间。单位是毫秒。30秒之内如果主节点但没有响应,主观认为主下线了。时间可以改可以自定义146行
sentinel failover-timeout mymaster 180000
#服务器宕机的最大时间,180秒之内如果主节点但没有响应,从节点开始投票,客观认为主下线了。时间可以改可以自定义两台从节点配置和主节点配置一致即可三台配置完成后需要先起主节点再起从节点三台主机在redis的源码包中启动哨兵模式
redis-sentinel sentinel.conf &
#启动哨兵模式。&表示后台运行主节点:
redis-cli -p 26379 info Sentinel
#查看整个集群的哨兵情况查看主从信息:
tail -f /var/log/redis_6379.log
#查看主节点日志,查看主从信息模拟故障切换:
可能会有延迟不是立刻切换
ps-elf | grep redis
#查看主节点
kill -9 redis的主进程或者/etc/init.d/redis_6379 stop停止redis都可以测试测试新主是否可以正常插入数据
测试两从是否可以数据同步
测试旧主机是否还有插入数据旧主失去写的功能,新主增加写的功能。从2的配置文件指向了新的主
而旧主的配置文件中指向自己的配置将会消失

小模式用哨兵,大模式用集群

总结

运维人员日常巡检中关注的指标

#查看redis使用内存的指标
used_memory:11285512
#数据占用的内存(单位是字节)
used_memory_rss:24285184
#向操作系统申请的内存(单位是字节)
used_memory_peak:23952088
#redis使用内存的峰值(单位是字节)

内存碎片:

内存碎片率:used_mem0ry_rss/used_memory
#系统已经分配给了redis,但是未能够有效利用的内存redis-cli info memory | grep ratio
#查看内存碎片率allocator_frag_ratio:1.03
#分配器碎片比例。由redis主进程调度时产生的内存,比例越小越好,值越高,内存浪费越多。
allocator_rss_ratio:1.80
#表示分配器占用物理内存的比例,主进程调度过程中占用了多少物理内存
rss_overhead_ratio:1.13
#RSS是向系统申请的内存空间,redis占用物理空间额外的开销比例。比例越低越好。redis实际占用的物理内存和向系统申请的内存越接近额外的开销就越低
mem_fragmentation_ratio:2.16
#内存碎片的比例。值越低越好。表示内存的使用率越高

如何清理碎片:

自动清理碎片
vim /etc/redis/6379.conf
最后一行插入
activedefrag yes
#自动清理碎片
/etc/init.d/redis_6379.conf restart
#重启redis服务手动清理碎片
redis-cli memory purge
#手动清理碎片

如何设置阈值:

vim /etc/redis/6379.conf567行maxmemory 1gb
#一旦到达阈值会开始自动清理,开启key的回收机制

工作用要么保证数据完整性使用maxmemory-policy noeviction 要么使用maxmemory-policy volatile-ttl挑选一个即将过期的键值对清除

在工作当中一定要给redis占用内存设置阈值否则会将整个系统内存占满为止

redis的缓存击穿:

缓存击穿主要是热点数据缓存过期或者被删除,多个请求并发访问热点数据。请求也是转发到后台数据库了,导致数据库的性能快速下降

经常被请求的缓存数据最好设置为永不过期

主从复制:

主从复制是redis实现高可用的基础,哨兵模式和集群都是在主从复制的基础上实现高可用。

主从复制实现数据的多机备份,以及读写分离(主服务器负责写,从服务器只能读)

缺陷:故障无法自动恢复,需要人工干预。无法实现写操作的负载均衡

哨兵模式:

哨兵模式监控的是节点不是哨兵

故障恢复可能会优点延迟

最好是以复制数据最完整的从节点作为新的主节点

拓展

运维人员必须要关注的redis指标:

在日常巡检中需要经常查看这些指标使用情况

info memory
#查看redis使用内存的指标
used_memory:11285512
#数据占用的内存(单位是字节)
used_memory_rss:24285184
#向操作系统申请的内存(单位是字节)
used_memory_peak:23952088
#redis使用内存的峰值(单位是字节)

如何查看内存碎片率?

内存碎片率:used_mem0ry_rss/used_memory
#系统已经分配给了redis,但是未能够有效利用的内存redis-cli info memory | grep ratio
#查看内存碎片率allocator_frag_ratio:1.03
#分配器碎片比例。由redis主进程调度时产生的内存,比例越小越好,值越高,内存浪费越多。
allocator_rss_ratio:1.80
#表示分配器占用物理内存的比例,主进程调度过程中占用了多少物理内存
rss_overhead_ratio:1.13
#RSS是向系统申请的内存空间,redis占用物理空间额外的开销比例。比例越低越好。redis实际占用的物理内存和向系统申请的内存越接近额外的开销就越低
mem_fragmentation_ratio:2.16
#内存碎片的比例。值越低越好。表示内存的使用率越高

redis占用的内存效率问题如何解决?

1、 日常巡检中,针对redis的占用情况做监控

2、 给redis设置一个占用系统内存的阈值,避免占用系统的全部内容

3、 内存碎片清理,分为手动和自动两种模式

4、配置一个合适的key的回收机制。一般都是设置写满报错的方式(maxmemory-policy noeviction),通过运维人员手动维护。或者挑选一个即将过期的键值对清除(maxmemory-policy volatile-ttl)。

redis的缓存击穿

缓存击穿主要是热点数据缓存过期或者被删除,多个请求并发访问热点数据。请求也是转发到后台数据库了,导致数据库的性能快速下降

经常被请求的缓存数据最好设置为永不过期

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/200848.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Visual Studio Code 从英文界面切换中文

1、先安装中文的插件&#xff0c;直接安装。 2、点击右下角的 change language restart&#xff0c; 让软件重启即可以完成了。

leetcode:914. 卡牌分组(python3解法)

难度&#xff1a;简单 给定一副牌&#xff0c;每张牌上都写着一个整数。 此时&#xff0c;你需要选定一个数字 X&#xff0c;使我们可以将整副牌按下述规则分成 1 组或更多组&#xff1a; 每组都有 X 张牌。组内所有的牌上都写着相同的整数。 仅当你可选的 X > 2 时返回 tru…

基于单片机温湿度PM2.5报警系统

**单片机设计介绍&#xff0c; 基于单片机温湿度PM2.5报警设置系统 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 单片机温湿度PM2.5报警设置系统是一种智能化的环境检测与报警系统。它主要由单片机、传感器、液晶显示屏、蜂鸣器…

从暗黑3D火炬之光技能系统说到-Laya非入门教学一~资源管理

我不知道那些喷Laya没有浏览器&#xff0c;嘲笑别人编辑器做不好&#xff0c;是什么水平&#xff1f; 首先目前国内除了WPS和飞书&#xff0c;就没有第三家公司能把编辑器做好。 要是一般的游戏开发者&#xff0c;如我&#xff0c;有一点点引擎代码&#xff08;某项目&#x…

51单片机LED灯渐明渐暗实验

51单片机LED灯渐明渐暗实验 1.概述 这篇文章介绍使用单片机控制两个LED彩灯亮度渐明渐暗效果&#xff0c;详细介绍了操作步骤以及完整的程序代码&#xff0c;动手就能制作的小实验。 2.操作步骤 2.1.硬件搭建 1.硬件准备 名称型号数量单片机STC12C2052AD1LED彩灯无2晶振1…

我的创作纪念日2048天

机缘 在这特殊的日子里&#xff0c;我要庆祝我的 CSDN 创作纪念日——已经坚持了整整2048天&#xff01; 在这2048天里&#xff0c;我经历了很多成长和收获。作为一名技术写手&#xff0c;我投入了大量的时间和精力来分享我的知识和经验。我曾经写过关于数据库、数据同步、数…

2023年中职“网络安全“—Web 渗透测试①

2023年中职"网络安全"—Web 渗透测试① Web 渗透测试任务环境说明&#xff1a;1.访问地址http://靶机IP/task1&#xff0c;分析页面内容&#xff0c;获取flag值&#xff0c;Flag格式为flag{xxx}&#xff1b;2.访问地址http://靶机IP/task2&#xff0c;访问登录页面。…

智能座舱架构与芯片- (11) 软件篇 上

一、智能汽车基础软件平台分类 汽车软件主要分为应用软件和基础软件。应用软件和业务形态高度关联&#xff0c;不同控制器的应用软件之间差异较大。基础软件介于应用软件和硬件之间&#xff0c;用于屏蔽硬件特性、支撑应用软件。可有效地实现应用软件与硬件之间解耦&#xff0…

2023.11.22 -数据仓库

目录 https://blog.csdn.net/m0_49956154/article/details/134320307?spm1001.2014.3001.5501 1经典传统数仓架构 2离线大数据数仓架构 3数据仓库三层 数据运营层,源数据层&#xff08;ODS&#xff09;&#xff08;Operational Data Store&#xff09; 数据仓库层&#…

全志R128芯片RTOS调试指南

RTOS 调试指南 此文档介绍 FreeRTOS 系统方案支持的常用软件调试方法&#xff0c;帮助相关开发人员快速高效地进行软件调试&#xff0c;提高解决软件问题的效率。 栈回溯 栈回溯是指获取程序的调用链信息&#xff0c;通过栈回溯信息&#xff0c;能帮助开发者快速理清程序执行…

tomcat (SCI)ServletContainerInitializer 的加载原理

问题&#xff1a;使用WebScoket的时候发现通过ServerEndpoint方式注册上去的url无法访问&#xff0c;报错404 经过排查发现在WsServerContainer这个类中的addEndpoint方法一直没有触发ServerEndpoint注解的扫描 通过该方法来源于StandardContext.startInternal()方法的调用如下…

NOIP2015提高组第二轮T1:能量项链

题目链接 [NOIP2006 提高组] 能量项链 题目描述 在 Mars 星球上&#xff0c;每个 Mars 人都随身佩带着一串能量项链。在项链上有 N N N 颗能量珠。能量珠是一颗有头标记与尾标记的珠子&#xff0c;这些标记对应着某个正整数。并且&#xff0c;对于相邻的两颗珠子&#xff0…

无法创建 8192 MB 的匿名分页文件: 系统资源不足,无法完成请求的服务。

好久没用VMware Workstation&#xff0c;今天突然要用&#xff0c;发现所有的虚机在启动的时候提示都提示&#xff1a; 无法创建 XXXX MB 的匿名分页文件&#xff1a;页面文件太小&#xff0c;无法完成操作。 未能分配主内存。 模块"MainMem"启动失败。 未能启动…

NX二次开发UF_CAM_PREF_ask_logical_value 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan UF_CAM_PREF_ask_logical_value Defined in: uf_cam_prefs.h int UF_CAM_PREF_ask_logical_value(UF_CAM_PREF_t pref, logical * value ) overview 概述 This function provides …

CI/CD - jenkins

目录 一、部署 1、简介 2、部署 二、配置 三、实时触发 四、自动化构建docker镜像 五、通过ssh插件交付任务 六、添加jenkins节点 七、RBAC 八、pipeline 九、jenkins结合ansible参数化构建 1、安装ansible 2、新建gitlab项目 3、jenkins新建项目playbook 一、部…

Golang起步篇(Windows、Linux、mac三种系统安装配置go环境以及IDE推荐以及入门语法详细释义)

Golang起步篇 Golang起步篇一. 安装Go语言开发环境1. Wondows下搭建Go开发环境(1). 下载SDK工具包(2). 解压下载的压缩包&#xff0c;放到特定的目录下&#xff0c;我一般放在d:/programs下(路径不能有中文或者特殊符号如空格等)(3). 配置环境变量步骤1&#xff1a;先打开环境变…

2023年国自然植物科学相关面上项目信息公布(小麦、大麦、棉花、大豆、玉米)

2024年申报国自然项目基金撰写及技巧http://mp.weixin.qq.com/s?__bizMzA4NTAwMTY1NA&mid2247575761&idx1&sn32dbacd3393f3b76a1e0668e4b8b3c89&chksm9fdd7c08a8aaf51ec31d4790067bb57751a09947eeb7e728b8c008d26b89adba37e0cab32a62&scene21#wechat_redi…

HandBrake :MacOS专业视频转码工具

handbrake 俗称大菠萝&#xff0c;是一款免费开源的视频转换、压缩软件&#xff0c;它几乎支持目前市面上所能见到的所有视频格式&#xff0c;并且支持电脑硬件压缩&#xff0c;是一款不可多得的优秀软件 优点 ∙Windows, Linux, Mac 三平台支持 ∙开源、免费、无广告 ∙支…

开发上门送桶装水小程序要考虑哪些业务场景

上门送水业务已经有很长一段时间了&#xff0c;但是最开始都是给用户发名片、贴小广告&#xff0c;然后客户电话订水&#xff0c;水站工作人员再上门去送&#xff0c;这种人工记单和派单效率并不高&#xff0c;并且电话沟通中也比较容易出现偏差&#xff0c;那么根据这个情况就…

Java线程的学习

本来我以为这可能只是Java里的一小块知识点&#xff0c;但当我搜索自己关注的Up主的网课时&#xff0c;觉得还是开一个系列来记录好了。我的记录绝不仅仅是照搬课程中的内容&#xff0c;我会带上自己的理解以及示例代码、并且是按照本人的专业课老师上课的节奏来记录&#xff0…