竞赛选题 题目:基于LSTM的预测算法 - 股票预测 天气预测 房价预测

文章目录

  • 0 简介
  • 1 基于 Keras 用 LSTM 网络做时间序列预测
  • 2 长短记忆网络
  • 3 LSTM 网络结构和原理
    • 3.1 LSTM核心思想
    • 3.2 遗忘门
    • 3.3 输入门
    • 3.4 输出门
  • 4 基于LSTM的天气预测
    • 4.1 数据集
    • 4.2 预测示例
  • 5 基于LSTM的股票价格预测
    • 5.1 数据集
    • 5.2 实现代码
  • 6 lstm 预测航空旅客数目
    • 数据集
    • 预测代码
  • 7 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于LSTM的预测算法 - 股票预测 天气预测 房价预测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 基于 Keras 用 LSTM 网络做时间序列预测

时间序列预测是一类比较困难的预测问题。

与常见的回归预测模型不同,输入变量之间的“序列依赖性”为时间序列问题增加了复杂度。

一种能够专门用来处理序列依赖性的神经网络被称为 递归神经网络(Recurrent Neural
Networks、RNN)。因其训练时的出色性能,长短记忆网络(Long Short-Term Memory
Network,LSTM)是深度学习中广泛使用的一种递归神经网络(RNN)。

在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建 LSTM 神经网络模型实现时间序列预测。

  • 如何为基于回归、窗口法和时间步的时间序列预测问题建立对应的 LSTM 网络。
  • 对于非常长的序列,如何在构建 LSTM 网络和用 LSTM 网络做预测时保持网络关于序列的状态(记忆)。

2 长短记忆网络

长短记忆网络,或 LSTM 网络,是一种递归神经网络(RNN),通过训练时在“时间上的反向传播”来克服梯度消失问题。

LSTM 网络可以用来构建大规模的递归神经网络来处理机器学习中复杂的序列问题,并取得不错的结果。

除了神经元之外,LSTM 网络在神经网络层级(layers)之间还存在记忆模块。

一个记忆模块具有特殊的构成,使它比传统的神经元更“聪明”,并且可以对序列中的前后部分产生记忆。模块具有不同的“门”(gates)来控制模块的状态和输出。一旦接收并处理一个输入序列,模块中的各个门便使用
S 型的激活单元来控制自身是否被激活,从而改变模块状态并向模块添加信息(记忆)。

一个激活单元有三种门:

  • 遗忘门(Forget Gate):决定抛弃哪些信息。
  • 输入门(Input Gate):决定输入中的哪些值用来更新记忆状态。
  • 输出门(Output Gate):根据输入和记忆状态决定输出的值。

每一个激活单元就像是一个迷你状态机,单元中各个门的权重通过训练获得。

3 LSTM 网络结构和原理

long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神

在这里插入图片描述

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

在这里插入图片描述

不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

在这里插入图片描述

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise
的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

3.1 LSTM核心思想

LSTM的关键在于细胞的状态整个(如下图),和穿过细胞的那条水平线。

细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

在这里插入图片描述
门可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

在这里插入图片描述
sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0
表示“不让任何信息通过”, 1 表示“让所有信息通过”。

LSTM通过三个这样的本结构来实现信息的保护和控制。这三个门分别输入门、遗忘门和输出门。

3.2 遗忘门

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取和,输出一个在 0到
1之间的数值给每个在细胞状态中的数字。1 表示“完全保留”,0 表示“完全舍弃”。

让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。

在这里插入图片描述
其中

在这里插入图片描述

表示的是 上一时刻隐含层的 输出,

在这里插入图片描述

表示的是当前细胞的输入。σ表示sigmod函数。

3.3 输入门

下一步是决定让多少新的信息加入到 cell 状态 中来。实现这个需要包括两个步骤:首先,一个叫做“input gate layer ”的 sigmoid
层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容。在下一步,我们把这两部分联合起来,对 cell 的状态进行一个更新。

在这里插入图片描述

3.4 输出门

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid
层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid
门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

在语言模型的例子中,因为他就看到了一个代词,可能需要输出与一个动词相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

在这里插入图片描述

4 基于LSTM的天气预测

4.1 数据集

在这里插入图片描述

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。

给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。

下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。

下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。

4.2 预测示例

多步骤预测模型中,给定过去的采样值,预测未来一系列的值。对于多步骤模型,训练数据再次包括每小时采样的过去五天的记录。但是,这里的模型需要学习预测接下来12小时的温度。由于每10分钟采样一次数据,因此输出为72个预测值。

future_target = 72
x_train_multi, y_train_multi = multivariate_data(dataset, dataset[:, 1], 0,TRAIN_SPLIT, past_history,future_target, STEP)
x_val_multi, y_val_multi = multivariate_data(dataset, dataset[:, 1],TRAIN_SPLIT, None, past_history,future_target, STEP)

划分数据集

train_data_multi = tf.data.Dataset.from_tensor_slices((x_train_multi, y_train_multi))
train_data_multi = train_data_multi.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()val_data_multi = tf.data.Dataset.from_tensor_slices((x_val_multi, y_val_multi))
val_data_multi = val_data_multi.batch(BATCH_SIZE).repeat()

绘制样本点数据

def multi_step_plot(history, true_future, prediction):plt.figure(figsize=(12, 6))num_in = create_time_steps(len(history))num_out = len(true_future)plt.plot(num_in, np.array(history[:, 1]), label='History')plt.plot(np.arange(num_out)/STEP, np.array(true_future), 'bo',label='True Future')if prediction.any():plt.plot(np.arange(num_out)/STEP, np.array(prediction), 'ro',label='Predicted Future')plt.legend(loc='upper left')plt.show()
for x, y in train_data_multi.take(1):multi_step_plot(x[0], y[0], np.array([0]))

在这里插入图片描述

此处的任务比先前的任务复杂一些,因此该模型现在由两个LSTM层组成。最后,由于需要预测之后12个小时的数据,因此Dense层将输出为72。

multi_step_model = tf.keras.models.Sequential()
multi_step_model.add(tf.keras.layers.LSTM(32,return_sequences=True,input_shape=x_train_multi.shape[-2:]))
multi_step_model.add(tf.keras.layers.LSTM(16, activation='relu'))
multi_step_model.add(tf.keras.layers.Dense(72))multi_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(clipvalue=1.0), loss='mae')

训练

multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_data_multi,validation_steps=50)

在这里插入图片描述

在这里插入图片描述

5 基于LSTM的股票价格预测

5.1 数据集

股票数据总共有九个维度,分别是

在这里插入图片描述

5.2 实现代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
plt.rcParams['font.sans-serif']=['SimHei']#显示中文
plt.rcParams['axes.unicode_minus']=False#显示负号def load_data():test_x_batch = np.load(r'test_x_batch.npy',allow_pickle=True)test_y_batch = np.load(r'test_y_batch.npy',allow_pickle=True)return (test_x_batch,test_y_batch)#定义lstm单元
def lstm_cell(units):cell = tf.contrib.rnn.BasicLSTMCell(num_units=units,forget_bias=0.0)#activation默认为tanhreturn cell#定义lstm网络
def lstm_net(x,w,b,num_neurons):#将输入变成一个列表,列表的长度及时间步数inputs = tf.unstack(x,8,1)cells = [lstm_cell(units=n) for n in num_neurons]stacked_lstm_cells = tf.contrib.rnn.MultiRNNCell(cells)outputs,_ =  tf.contrib.rnn.static_rnn(stacked_lstm_cells,inputs,dtype=tf.float32)return tf.matmul(outputs[-1],w) + b#超参数
num_neurons = [32,32,64,64,128,128]#定义输出层的weight和bias
w = tf.Variable(tf.random_normal([num_neurons[-1],1]))
b = tf.Variable(tf.random_normal([1]))#定义placeholder
x = tf.placeholder(shape=(None,8,8),dtype=tf.float32)#定义pred和saver
pred = lstm_net(x,w,b,num_neurons)
saver = tf.train.Saver(tf.global_variables())if __name__ == '__main__':#开启交互式Sessionsess = tf.InteractiveSession()saver.restore(sess,r'D:\股票预测\model_data\my_model.ckpt')#载入数据test_x,test_y = load_data()#预测predicts = sess.run(pred,feed_dict={x:test_x})predicts = ((predicts.max() - predicts) / (predicts.max() - predicts.min()))#数学校准#可视化plt.plot(predicts,'r',label='预测曲线')plt.plot(test_y,'g',label='真实曲线')plt.xlabel('第几天/days')plt.ylabel('开盘价(归一化)')plt.title('股票开盘价曲线预测(测试集)')plt.legend()plt.show()#关闭会话sess.close()	

在这里插入图片描述

6 lstm 预测航空旅客数目

数据集

airflights passengers dataset下载地址

https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-
passengers.csv

这个dataset包含从1949年到1960年每个月的航空旅客数目,共12*12=144个数字。

下面的程序中,我们以1949-1952的数据预测1953的数据,以1950-1953的数据预测1954的数据,以此类推,训练模型。

预测代码

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
import os# super parameters
EPOCH = 400
learning_rate = 0.01
seq_length = 4   # 序列长度
n_feature = 12   # 序列中每个元素的特征数目。本程序采用的序列元素为一年的旅客,一年12个月,即12维特征。# data
data = pd.read_csv('airline-passengers.csv')   # 共 "12年*12个月=144" 个数据
data = data.iloc[:, 1:5].values        # dataFrame, shape (144,1)
data = np.array(data).astype(np.float32)
sc = MinMaxScaler()
data = sc.fit_transform(data)          # 归一化
data = data.reshape(-1, n_feature)     # shape (12, 12)trainData_x = []
trainData_y = []
for i in range(data.shape[0]-seq_length):tmp_x = data[i:i+seq_length, :]tmp_y = data[i+seq_length, :]trainData_x.append(tmp_x)trainData_y.append(tmp_y)# model
class Net(nn.Module):def __init__(self, in_dim=12, hidden_dim=10, output_dim=12, n_layer=1):super(Net, self).__init__()self.in_dim = in_dimself.hidden_dim = hidden_dimself.output_dim = output_dimself.n_layer = n_layerself.lstm = nn.LSTM(input_size=in_dim, hidden_size=hidden_dim, num_layers=n_layer, batch_first=True)self.linear = nn.Linear(hidden_dim, output_dim)def forward(self, x):_, (h_out, _) = self.lstm(x)  # h_out是序列最后一个元素的hidden state# h_out's shape (batchsize, n_layer*n_direction, hidden_dim), i.e. (1, 1, 10)# n_direction根据是“否为双向”取值为1或2h_out = h_out.view(h_out.shape[0], -1)   # h_out's shape (batchsize, n_layer * n_direction * hidden_dim), i.e. (1, 10)h_out = self.linear(h_out)    # h_out's shape (batchsize, output_dim), (1, 12)return h_outtrain = True
if train:model = Net()loss_func = torch.nn.MSELoss()optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# trainfor epoch in range(EPOCH):total_loss = 0for iteration, X in enumerate(trainData_x):  # X's shape (seq_length, n_feature)X = torch.tensor(X).float()X = torch.unsqueeze(X, 0)                # X's shape (1, seq_length, n_feature), 1 is batchsizeoutput = model(X)       # output's shape (1,12)output = torch.squeeze(output)loss = loss_func(output, torch.tensor(trainData_y[iteration]))optimizer.zero_grad()   # clear gradients for this training iterationloss.backward()         # computing gradientsoptimizer.step()        # update weightstotal_loss += lossif (epoch+1) % 20 == 0:print('epoch:{:3d}, loss:{:6.4f}'.format(epoch+1, total_loss.data.numpy()))# torch.save(model, 'flight_model.pkl')  # 这样保存会弹出UserWarning,建议采用下面的保存方法,详情可参考https://zhuanlan.zhihu.com/p/129948825torch.save({'state_dict': model.state_dict()}, 'checkpoint.pth.tar')else:# model = torch.load('flight_model.pth')model = Net()checkpoint = torch.load('checkpoint.pth.tar')model.load_state_dict(checkpoint['state_dict'])# predict
model.eval()
predict = []
for X in trainData_x:             # X's shape (seq_length, n_feature)X = torch.tensor(X).float()X = torch.unsqueeze(X, 0)     # X's shape (1, seq_length, n_feature), 1 is batchsizeoutput = model(X)             # output's shape (1,12)output = torch.squeeze(output)predict.append(output.data.numpy())# plot
plt.figure()
predict = np.array(predict)
predict = predict.reshape(-1, 1).squeeze()
x_tick = np.arange(len(predict)) + (seq_length*n_feature)
plt.plot(list(x_tick), predict, label='predict data')data_original = data.reshape(-1, 1).squeeze()
plt.plot(range(len(data_original)), data_original, label='original data')plt.legend(loc='best')
plt.show()

运行结果

在这里插入图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/203886.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用SpringBoot集成MyBatis对管理员的查询操作

增删改查中的查询操作,对所有的普通管理员进行查询操作。 效果展示: 不仅可以在打开页面时进行对管理员的自动查询操作,还可以在输入框进行查询。 首先是前端向后端发送POST请求,后端接收到请求,如果是有参数传到后端…

C语言--每日选择题--Day27

第一题 1. 对于代码段,问下面不可以表示a[1]地址的是() int a[10]; A:&a[0] 1 B:a sizeof(int) C:(int*)&a 1 D:(int*)((char*)&a sizeof(int)) 答案及解析 A A:取到…

免费获取GPT-4的五种工具

不可否认,由OpenAI带来的GPT-4已是全球最受欢迎的、功能最强大的大语言模型(LLM)之一。大多数人都需要使用ChatGPT Plus的订阅服务去访问GPT-4。为此,他们通常需要每月支付20美元。那么问题来了,如果您不想每月有这笔支…

redis运维(十五) 集合

一 集合 ① 概念 集合的元素在redis里面的世界是member集合: setset集合当中不允许重复的元素,而且set集合当中元素是没有顺序的,不存在元素下标 ② sadd、smembers、srem ③ sismember、srandmember、spop、scard spop 命令用于移除集合中的指定 …

docker国内镜像加速

创建或修改 /etc/docker/daemon.json 文件,修改为如下形式 {"registry-mirrors": ["https://registry.docker-cn.com","http://hub-mirror.c.163.com","https://docker.mirrors.ustc.edu.cn"] } Docker中国区官方镜像htt…

MidJourney笔记(4)-settings

前面已经大概介绍了MidJourney的基础知识,后面我主要是基于实操来分享自己的笔记。可能内容顺序会有点乱,请大家理解。 这次主要是想讲讲settings这个命令。我们只需在控制台输入/settings,然后回车,就可以执行这个命令。 (2023年11月26日版本界面) 可能有些朋友出来的界…

C# Winform使用log4net记录日志

写在前面 Log4Net是从Java的log4j移植过来的,功能也与log4j类似,可以把日志信息输出到文件、数据库、控制台、Windows 事件日志、远程系统日志服务等不同的介质或目标。 Log4Net配置选项丰富灵活,并且可在运行时动态更新配置并应用&#xf…

springboot+vue智能企业设备管理系统05k50

智能设备管理系统主要是为了提高工作人员的工作效率和更方便快捷的满足用户,更好存储所有数据信息及快速方便的检索功能,对系统的各个模块是通过许多今天的发达系统做出合理的分析来确定考虑用户的可操作性,遵循开发的系统优化的原则&#xf…

【python+requests】接口自动化测试

这两天一直在找直接用python做接口自动化的方法,在网上也搜了一些博客参考,今天自己动手试了一下。 一、整体结构 上图是项目的目录结构,下面主要介绍下每个目录的作用。 Common:公共方法:主要放置公共的操作的类,比如数据库sql…

【开源】基于Vue和SpringBoot的独居老人物资配送系统

项目编号: S 045 ,文末获取源码。 \color{red}{项目编号:S045,文末获取源码。} 项目编号:S045,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 查询社区4…

学生信息管理系统程序Python

系统主界面 在该界面中可以选择要使用功能对应的菜单进行不同的操作。在选择功能菜单时,有两种方法, 一种是输入1,另一种是按下键盘上的↑或↓方向键进行选择。这两种方法的结果是一样的,所以使用哪种方法都可以。 (…

使用echars实现数据可视化

生活随笔 展翅飞翔之际 请下定决心不再回头 echars实现数据可视化 在搭建后台页面时,可能会遇到很多的表格,但有时表格所展现的数据并不能直观的体现出当前用户的宏观信息,所以就可以引入一个新的表格插件——echars 快速上手 - Handbook…

(一)pytest自动化测试框架之生成测试报告(mac系统)

前言 我们可以通过pytest-html插件来生成测试报告,但是pytest-html插件生成的测试报告不够美观,逼格也不够高,通过allure生成的测试报告是比较美观的,花里胡哨的,能够提升一个level。 allure官网: Allure…

每日一练2023.11.27——考试座位号【PTA】

题目链接:L1-005 考试座位号 题目要求: 每个 PAT 考生在参加考试时都会被分配两个座位号,一个是试机座位,一个是考试座位。正常情况下,考生在入场时先得到试机座位号码,入座进入试机状态后,系…

MySQL的Redo Log跟Binlog

文章目录 概要Redo Log日志Redo Log的作用Redo Log的写入机制 Binlog日志Binlog的作用Binlog写入机制 两段提交 概要 Redo Log和Binlog是MySQL日志系统中非常重要的两种机制,也有很多相似之处,本文主要介绍两者细节和区别。 Redo Log日志 Redo Log的作…

详解开源数据库审计平台Yearning

基本概念 数据库审计(简称DBAudit)能够实时记录网络上的数据库活动,对数据库操作进行细粒度审计的合规性管理,对数据库遭受到的风险行为进行告警,对攻击行为进行阻断。它通过对用户访问数据库行为的记录、分析和汇报&…

Unity EventSystem的一些理解和使用

Unity的EventSystem是用于处理用户输入和交互的系统。它是Unity UI系统的核心组件之一,可以用于捕捉和分发各种事件,例如点击、拖拽、按键、射线等。 常用的属性和方法有以下这些: 属性: current: 获取当前的EventSystem实例。…

Oracle-客户端连接报错ORA-12545问题

问题背景: 用户在客户端服务器通过sqlplus通过scan ip登陆访问数据库时,偶尔会出现连接报错ORA-12545: Connect failed because target host or object does not exist的情况。 问题分析: 首先,登陆到连接有问题的客户端数据库上,…

1. git入门操作

1. git入门操作 1、基本名词解释 图片 名词含义index索引区,暂存区master分支名,每个仓库都有个master,它作为主分支。branch其他分支,我们可以把master分支上的代码拷贝一份,重新命名为其他分支名work space就是我…

Rust语言入门教程(七) - 所有权系统

所有权系统是Rust敢于声称自己为一门内存安全语言的底气来源,也是让Rust成为一门与众不同的语言的所在之处。也正是因为这个特别的所有权系统,才使得编译器能够提前暴露代码中的错误,并给出我们必要且精准的错误提示。 所有权系统的三个规则…