超分辨率重建

意义

客观世界的场景含有丰富多彩的信息,但是由于受到硬件设备的成像条件和成像方式的限制,难以获得原始场景中的所有信息。而且,硬件设备分辨率的限制会不可避免地使图像丢失某些高频细节信息。在当今信息迅猛发展的时代,在卫星遥感、医学影像、多媒体视频等领域中对图像质量的要求越来越高,人们不断寻求更高质量和更高分辨率的图像,来满足日益增长的需求。

空间分辨率的大小是衡量图像质量的一个重要指标,也是将图像应用到实际生活中重要的参数之一。分辨率越高的图像含有的细节信息越多,图像清晰度越高,在实际应用中对各种目标的识别和判断也更加准确。

但是通过提高硬件性能从而提高图像的分辨率的成本高昂。因此,为了满足对图像分辨率的需求,又不增加硬件成本的前提下,依靠软件方法的图像超分辨率重建应运而生。

超分辨率图像重建是指从一系列有噪声、模糊及欠采样的低分辨率图像序列中恢复出一幅高分辨率图像的过程。可以针对现有成像系统普遍存在分辨率低的缺陷,运用某些算法,提高所获得低分辨率图像的质量。因此,超分辨率重建算法的研究具有广阔的发展空间。

方法的具体细节

评价指标
峰值信噪比

峰值信噪比(Peak Signal-to-Noise Ratio), 是信号的最大功率和信号噪声功率之比,来测量被压缩的重构图像的质量,通常以分贝来表示。PSNR指标值越高,说明图像质量越好。

SSIM计算公式如下:

PSNR=10\ast lg\frac{MAX_I^2}{MSE}

MSE表示两个图像之间对应像素之间差值平方的均值。

MAX^2_I表示图像中像素的最大值。对于8bit图像,一般取255。

MSE=\frac{1}{M\ast N} \displaystyle \sum_{i=1}^{N} \sum_{j=1}^{M}(f_{ij}-f'_{ij})^2

f_{ij} 表示图像X在 ij 处的像素值

f'_{ij} 表示图像Y在 ij 处的像素值

结构相似性评价

结构相似性评价(Structural Similarity Index), 是衡量两幅图像相似度的指标,取值范围为0到1。SSIM指标值越大,说明图像失真程度越小,图像质量越好。

SSIM计算公式如下:

L(X,Y)=\frac{2\mu X\mu Y +C_1}{\mu ^2_X + \mu ^2_Y + C_1}

C(X,Y)=\frac{2\sigma X\sigma Y +C_2}{\sigma ^2_X + \sigma ^2_Y + C_2}

S(X,Y)=\frac{\sigma _{XY} + C_3}{\sigma _X \sigma _Y + C_3}

SSIM(X,Y)=L(X,Y) \ast C(X,Y) \ast S(X,Y)

 这两种方式,一般情况下能较为准确地评价重建效果。但是毕竟人眼的感受是复杂丰富的,所以有时也会出现一定的偏差。

EDSR

img

SRResNet在SR的工作中引入了残差块,取得了更深层的网络,而EDSR是对SRResNet的一种提升,其最有意义的模型性能提升是去除掉了SRResNet多余的模块(BN层)

image-20211229150541634

EDSR把批规范化处理(batch normalization, BN)操作给去掉了。

论文中说,原始的ResNet最一开始是被提出来解决高层的计算机视觉问题,比如分类和检测,直接把ResNet的结构应用到像超分辨率这样的低层计算机视觉问题,显然不是最优的。由于批规范化层消耗了与它前面的卷积层相同大小的内存,在去掉这一步操作后,相同的计算资源下,EDSR就可以堆叠更多的网络层或者使每层提取更多的特征,从而得到更好的性能表现。EDSR用L1损失函数来优化网络模型。

1.解压数据集

因为训练时间可能不是很长,所以这里用了BSD100,可以自行更换为DIV2K或者coco

#  !unzip -o /home/aistudio/data/data121380/DIV2K_train_HR.zip -d train
# !unzip -o  /home/aistudio/data/data121283/Set5.zip -d test
 2.定义dataset
import os
from paddle.io import Dataset
from paddle.vision import transforms
from PIL import Image
import random
import paddle
import PIL
import numbers
import numpy as np
from PIL import Image
from paddle.vision.transforms import BaseTransform
from paddle.vision.transforms import functional as F
import matplotlib.pyplot as pltclass SRDataset(Dataset):def __init__(self, data_path, crop_size, scaling_factor):""":参数 data_path: 图片文件夹路径:参数 crop_size: 高分辨率图像裁剪尺寸  (实际训练时不会用原图进行放大,而是截取原图的一个子块进行放大):参数 scaling_factor: 放大比例"""self.data_path=data_pathself.crop_size = int(crop_size)self.scaling_factor = int(scaling_factor)self.images_path=[]# 如果是训练,则所有图像必须保持固定的分辨率以此保证能够整除放大比例# 如果是测试,则不需要对图像的长宽作限定# 读取图像路径for name in os.listdir(self.data_path):self.images_path.append(os.path.join(self.data_path,name))# 数据处理方式self.pre_trans=transforms.Compose([# transforms.CenterCrop(self.crop_size),transforms.RandomCrop(self.crop_size),transforms.RandomHorizontalFlip(0.5),transforms.RandomVerticalFlip(0.5),# transforms.ColorJitter(brightness=0.3, contrast=0.3, hue=0.3),])self.input_transform = transforms.Compose([transforms.Resize(self.crop_size//self.scaling_factor),transforms.ToTensor(),transforms.Normalize(mean=[0.5],std=[0.5]),])self.target_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.5],std=[0.5]),])def __getitem__(self, i):# 读取图像img = Image.open(self.images_path[i], mode='r')img = img.convert('RGB')img=self.pre_trans(img)lr_img = self.input_transform(img)hr_img = self.target_transform(img.copy())return lr_img, hr_imgdef __len__(self):return len(self.images_path)

测试dataset

# 单元测试train_path='train/DIV2K_train_HR'
test_path='test'
ds=SRDataset(train_path,96,2)
l,h=ds[1]# print(type(l))
print(l.shape)
print(h.shape)l=np.array(l)
h=np.array(h)
print(type(l))
l=l.transpose(2,1,0)
h=h.transpose(2,1,0)
print(l.shape)
print(h.shape)plt.subplot(1, 2, 1)
plt.imshow(((l+1)/2))
plt.title('l')
plt.subplot(1, 2, 2)
plt.imshow(((h+1)/2))
plt.title('h')
plt.show()

定义网络结构

较rsresnet少了归一化层,以及更深的残差块

from paddle.nn import Layer
from paddle import nn
import mathn_feat = 256
kernel_size = 3# 残差块 尺寸不变
class _Res_Block(nn.Layer):def __init__(self):super(_Res_Block, self).__init__()self.res_conv = nn.Conv2D(n_feat, n_feat, kernel_size, padding=1)self.relu = nn.ReLU()def forward(self, x):y = self.relu(self.res_conv(x))y = self.res_conv(y)y *= 0.1# 残差加入y = paddle.add(y, x)return yclass EDSR(nn.Layer):def __init__(self):super(EDSR, self).__init__()in_ch = 3num_blocks = 32self.conv1 = nn.Conv2D(in_ch, n_feat, kernel_size, padding=1)# 扩大self.conv_up = nn.Conv2D(n_feat, n_feat * 4, kernel_size, padding=1)self.conv_out = nn.Conv2D(n_feat, in_ch, kernel_size, padding=1)self.body = self.make_layer(_Res_Block, num_blocks)# 上采样self.upsample = nn.Sequential(self.conv_up, nn.PixelShuffle(2))# 32个残差块def make_layer(self, block, layers):res_block = []for _ in range(layers):res_block.append(block())return nn.Sequential(*res_block)def forward(self, x):out = self.conv1(x)out = self.body(out)out = self.upsample(out)out = self.conv_out(out)return out

看paddle能不能用gpu

import paddle
print(paddle.device.get_device())paddle.device.set_device('gpu:0')

训练,一般4个小时就可以达到一个不错的效果,set5中psnr可以达到27左右,当然这时间还是太少了

import os
from math import log10
from paddle.io import DataLoader
import paddle.fluid as fluid
import warnings
from paddle.static import InputSpecif __name__ == '__main__':warnings.filterwarnings("ignore", category=Warning)  # 过滤报警信息train_path='train/DIV2K_train_HR'test_path='test'crop_size = 96      # 高分辨率图像裁剪尺寸scaling_factor = 2  # 放大比例# 学习参数checkpoint = './work/edsr_paddle'   # 预训练模型路径,如果不存在则为Nonebatch_size = 30    # 批大小start_epoch = 0     # 轮数起始位置epochs = 10000        # 迭代轮数workers = 4         # 工作线程数lr = 1e-4           # 学习率# 先前的psnrpre_psnr=32.35try:model = paddle.jit.load(checkpoint)print('加载先前模型成功')except:print('未加载原有模型训练')model = EDSR()# 初始化优化器scheduler = paddle.optimizer.lr.StepDecay(learning_rate=lr, step_size=1, gamma=0.99, verbose=True)optimizer = paddle.optimizer.Adam(learning_rate=scheduler,parameters=model.parameters())criterion = nn.MSELoss()train_dataset = SRDataset(train_path, crop_size, scaling_factor)test_dataset = SRDataset(test_path, crop_size, scaling_factor)train_loader = DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=workers,)test_loader = DataLoader(test_dataset,batch_size=batch_size,shuffle=False,num_workers=workers,)for epoch in range(start_epoch, epochs+1):model.train()  # 训练模式:允许使用批样本归一化train_loss=0n_iter_train = len(train_loader)train_psnr=0# 按批处理for i, (lr_imgs, hr_imgs) in enumerate(train_loader):lr_imgs = lr_imgshr_imgs = hr_imgssr_imgs = model(lr_imgs)loss = criterion(sr_imgs, hr_imgs)  optimizer.clear_grad()loss.backward()optimizer.step()train_loss+=loss.item()psnr = 10 * log10(1 / loss.item())train_psnr+=psnrepoch_loss_train=train_loss / n_iter_traintrain_psnr=train_psnr/n_iter_trainprint(f"Epoch {epoch}. Training loss: {epoch_loss_train} Train psnr {train_psnr}DB")model.eval()  # 测试模式test_loss=0all_psnr = 0n_iter_test = len(test_loader)with paddle.no_grad():for i, (lr_imgs, hr_imgs) in enumerate(test_loader):lr_imgs = lr_imgshr_imgs = hr_imgssr_imgs = model(lr_imgs)loss = criterion(sr_imgs, hr_imgs)psnr = 10 * log10(1 / loss.item())all_psnr+=psnrtest_loss+=loss.item()epoch_loss_test=test_loss/n_iter_testepoch_psnr=all_psnr / n_iter_testprint(f"Epoch {epoch}. Testing loss: {epoch_loss_test} Test psnr{epoch_psnr} dB")if epoch_psnr>pre_psnr:paddle.jit.save(model, checkpoint,input_spec=[InputSpec(shape=[1,3,48,48], dtype='float32')])pre_psnr=epoch_psnrprint('模型更新成功')scheduler.step()

测试,需要自己上传一张低分辨率的图片

import paddle
from paddle.vision import transforms
import PIL.Image as Image
import numpy as npimgO=Image.open('img_003_SRF_2_LR.png',mode="r")  #选择自己图片的路径
img=transforms.ToTensor()(imgO).unsqueeze(0)#导入模型
net=paddle.jit.load("./work/edsr_paddle")source = net(img)[0, :, :, :]
source = source.cpu().detach().numpy()  # 转为numpy
source = source.transpose((1, 2, 0))  # 切换形状
source = np.clip(source, 0, 1)  # 修正图片
img = Image.fromarray(np.uint8(source * 255))plt.figure(figsize=(9,9))
plt.subplot(1, 2, 1)
plt.imshow(imgO)
plt.title('input')
plt.subplot(1, 2, 2)
plt.imshow(img)
plt.title('output')
plt.show()img.save('./sr.png')

EDSR_X2效果

双线性插值放大效果

 EDSR_X2放大效果

 双线性插值放大效果

EDSR_X2放大效果

原文: EDSR图像超分重构

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/208046.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【EI会议征稿】第四届生物信息学与智能计算国际学术研讨会(BIC 2024)

第四届生物信息学与智能计算国际学术研讨会(BIC 2024) 2024 4th International Conference on Bioinformatics and Intelligent Computing 2024年第四届生物信息学与智能计算国际学术研讨会 (BIC 2024)将定于2024年1月26-28日在…

Golang数据类型(数字型)

Go数据类型(数字型) Go中数字型数据类型大致分为整数(integer)、浮点数(floating point )和复数(Complex)三种 整数重要概念 整数在Go和Python中有较大区别,主要体现在…

C++的explicit和隐式转换

隐式转换是指在某些情况下,编译器会自动进行类型转换,将一种类型的值转换为另一种类型,以满足表达式的要求。这种转换是隐式进行的,不需要显式地调用转换函数或构造函数。 int a 5; double b a; // int 到 double 的隐式转换上…

利用 FormData 实现文件上传、监控网路速度和上传进度

利用 FormData 实现文件上传 基础功能:上传文件 演示如下: 概括流程: 前端:把文件数据获取并 append 到 FormData 对象中后端:通过 ctx.request.files 对象拿到二进制数据,获得 node 暂存的文件路径 前端…

【c++|SDL】开始使用之---demo

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 SDL 记录 1. hello word #include<SDL2/SDL.h>SDL_Window* g_pWindow 0; SDL_Renderer* g_pRenderer 0;int main(int argc, char* args[]) {//…

黄金比例设计软件Goldie App mac中文版介绍

Goldie App mac是一款测量可视化黄金比例的工具。专门为设计师打造&#xff0c;可以帮助他们在Mac上测量和可视化黄金比例&#xff0c;从而轻松创建出完美、平衡的设计。 Goldie App mac体积小巧&#xff0c;可以驻留在系统的菜单栏之上&#xff0c;随时提供给用户调用。 拥有独…

Dart编程基础 - 一种新的编程语言

Dart编程基础 – 一种新的编程语言 Dart Programming Essentials - A New Type of Programming Language By JacksonML Dart is a client-optimized language for fast apps on any platform From dart.dev 在1999年之前&#xff0c;和我一样对计算机技术感兴趣的伙伴们&…

面试篇spark(spark core,spark sql,spark 优化)

一&#xff1a;为什么学习spark&#xff1f; 相比较map-reduce框架&#xff0c;spark的框架执行效率更加高效。 mapreduce的执行框架示意图。 spark执行框架示意图 spark的执行中间结果是存储在内存当中的&#xff0c;而hdfs的执行中间结果是存储在hdfs中的。所以在运算的时…

基于通义千问和向量数据构建问答知识库

参考&#xff1a;Java从0到1构建基于ChatGPT向量数据库的检索增强生成模型RAG-02 - 知乎 (zhihu.com) 1、先开通 阿里云的向量检索服务 如何开通向量检索服务并创建API-KEY_向量检索服务-阿里云帮助中心 (aliyun.com) 按流程申请 最后需要申请API-KEY 安装DashVector SDK M…

Nacos2.x配置中心源码分析

概述 源码注释参考 git 仓库&#xff0c;对应流程图后续补充&#xff1b; 启动 nacos nacos 启动类&#xff1a; // com.alibaba.nacos.NacosSpringBootApplication(scanBasePackages "com.alibaba.nacos") ServletComponentScan EnableScheduling public class…

关于安科瑞AAFD-40型故障电弧探测器的功能介绍-安科瑞 蒋静

1 概述 故障电弧探测器&#xff08;以下简称探测器&#xff09;对接入线路中的故障电弧&#xff08;包括故障并联电弧、故障串联电弧&#xff09;进行有效的检测&#xff0c;当检测到线路中存在引起火灾的故障电弧时&#xff0c;可以进行现场的声光报警&#xff0c;并将报警信…

单片机实验(三)

前言 实验一&#xff1a;利用定时器T1的中断控制P1.7引脚输出音频信号&#xff0c;启动蜂鸣器发出一段熟悉的与众不同的具有10个音节的音乐音频。 实验二&#xff1a;使用定时器/计数器来实现一个LCD显示年、月、日、星期 、时、分、秒的电子表&#xff0c;要求时和分可以方便…

Vmware17虚拟机安装windows10系统

不要去什么系统之家之类的下载镜像&#xff0c;会不好安装&#xff0c;镜像被魔改过了&#xff0c;适合真实物理机上的系统在PE里安装系统&#xff0c;建议下载原版系统ISO文件 安装vmware17pro 下载地址https://dwangshuo.jb51.net/202211/tools/VMwareplayer17_855676.rar 解…

04.PostgreSQL是如何实现隔离级别的?

PostgreSQL是如何实现隔离级别的&#xff1f; 事务有哪些特性&#xff1f; 事务看起来感觉简单&#xff0c;但是要实现事务必须要遵守 4 个特性&#xff0c;分别如下&#xff1a; 原子性&#xff08;Atomicity&#xff09;&#xff1a;一个事务中的所有操作&#xff0c;要么…

Elasticsearch(ES)概述

文章目录 一.什么是Elasticsearch?1.正向索引和倒排索引2.Mysql和ES的概念对比3.安装elasticsearch、kibana 二.IK分词器三.索引库操作四.文档操作五.RestClient操作索引库1.初始化RestClient2.创建索引库3.删除索引库4.判断索引库是否存在 六.RestClient操作文档1.新增文档2.…

Elasticsearch 优化查询中获取字段内容的方式,性能提升5倍!

1、背景 集群配置为&#xff1a;8 个 node 节点&#xff0c;16 核 32G&#xff0c;索引 4 分片 1 副本。应用程序的查询逻辑是按经纬度排序后找前 200 条文档。 1、应用对查询要求比较高&#xff0c;search 没有慢查询的状态。 2、集群压测性能不能上去&#xff0c;cpu 使用未打…

Nat. Rev. Chem. | 一份关于用机器学习研究化学问题的评估指导

今天为大家介绍的是来自Tiago Rodrigues团队的一篇论文。机器学习&#xff08;ML&#xff09;有望解决化学领域的重大挑战。尽管ML工作流程的适用性极广&#xff0c;但人们通常发现评估研究设计多种多样。目前评估技术和指标的异质性导致难以&#xff08;或不可能&#xff09;比…

java设计模式学习之【单例模式】

文章目录 引言单例模式简介定义与用途实现方式&#xff1a;饿汉式懒汉式 UML 使用场景优势与劣势单例模式在spring中的应用饿汉式实现懒汉式实现数据库连接示例代码地址 引言 单例模式是一种常用的设计模式&#xff0c;用于确保在一个程序中一个类只有一个实例&#xff0c;并且…

计算机组成学习-数据的表示和运算总结

1、进制与编码 1.1 进位计数法 常用的进位计数法有十进制、二进制、八进制、十六进制等。十六进制每个 数位可取0〜9、A、B、C、D、E、F中的任意一个&#xff0c;其中A、B、C、D、E、F分别表示 10〜15。 八进制数字通常以前缀 "0"&#xff08;零&#xff09;加上数…

Ubuntu 2204 安装libimobiledevice

libimobiledevice是一个开源的软件&#xff0c;它可以直接使用系统原生协议和IOS设备进行通信&#xff0c;类似iMazing&#xff0c;iTunes&#xff0c;libimobiledevice不依赖IOS的私有库&#xff0c;并且连接IOS设备时用的都是原生协议&#xff0c;IOS无需越狱就能实现设备信息…